MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SEction 4.2

Math 1000 Worksheet
FALL 2023

SOLUTIONS

1. (a) The function is a polynomial, so it is defined for all real numbers x. Differentiation gives

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{3}-24 x^{2}+12 x=12 x(x-1)^{2} \\
f^{\prime \prime}(x) & =36 x^{2}-48 x+12=12(x-1)(3 x-1)
\end{aligned}
$$

Setting $f^{\prime}(x)=0$ gives $x=0$ and $x=1$. Since $f^{\prime}(x)$ is always defined, these are our critical points. Setting $f^{\prime \prime}(x)=0$ gives $x=1$ and $x=\frac{1}{3}$. Since $f^{\prime \prime}(x)$ is also always defined, these are the only hypercritical points. We use these values to construct the sign patterns depicted in Figure 1.

Figure 1: Sign patterns for Section 4.2, Question 1(a).
We can see that $f(x)$ is increasing on $0<x<1$ and $x>1$, and decreasing on $x<0$. There is a relative minimum at $x=0$ but $x=1$ is a saddle point.
The function is concave upward for $x<\frac{1}{3}$ and $x>1$, and concave downward for $\frac{1}{3}<x<1$. Both $x=\frac{1}{3}$ and $x=1$ are points of inflection.
(b) Since $1+x^{2}>0$ for all x, and a logarithmic function is defined as long as its argument is positive, the domain of $f(x)$ consists of all real numbers x. Differentiation gives

$$
f^{\prime}(x)=\frac{2 x}{1+x^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{-2(x-1)(x+1)}{\left(x^{2}+1\right)^{2}}
$$

Setting $f^{\prime}(x)=0$ gives $x=0$. Since we cannot have $\left(x^{2}+1\right)^{2}=0, f^{\prime}(x)$ is always defined, and so $x=0$ is the only critical point. Setting $f^{\prime \prime}(x)=0$ gives $x= \pm 1$. Again, $f^{\prime \prime}(x)$ is always defined, so these are the only hypercritical points. We use these values to construct the sign pattern shown in Figure 2.

Figure 2: Sign patterns for Section 4.2, Question 1(b).
We can see that $f(x)$ is increasing on $x>0$ and decreasing on $x<0$. There is a relative minimum at $x=0$ but there are no local maxima.
Furthermore, $f(x)$ is concave upward on $-1<x<1$ and concave downward on $x<-1$ and $x>1$. Both $x=1$ and $x=-1$ are inflection points.

