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[5] 1. Since this is a quasirational function, we must consider both limits at infinity. Note that
the smallest power of x in the denominator is effectively x (since we treat the x2 inside the
square root as having half its actual power). First, then,
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so the limit does not exist.

Next,
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Hence this function has just one horizontal asymptote, namely y = 5
6
.



[5] 2. First observe that f(3) = 3k − k + 1 = 2k + 1. This will be defined for all k.

Next,
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Thus the limit will exist for all k 6= 3.

Finally, we need lim
x→3

f(x) = f(3), so we set
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so k = 0 or k = 2.

[10] 3. First, we consider the points where we may obtain division by zero.

From the first definition, this occurs when

x2 − 1 = (x− 1)(x + 1) = 0,

so x = 1 or x = −1. However, this definition only applies when x < 0, so we reject x = 1.
When x = −1, direct substitution produces a −4

0
form, so this is a vertical asymptote — and

therefore a non-removable discontinuity.

From the second definition, the denominator is zero when x − 2 = 0 so x = 2. Direct
substitution results in a 0

0
indetermine form, so we need to take the limit:
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Since the limit exists, x = 2 is a removable discontinuity.

From the third definition, the denominator is zero when x− 3 = 0, so x = 3. However, this
definition applies only when x ≥ 4, so we may omit this result.

The other way a discontinuity might result is at the points where the definition of the function
changes.

At x = 0, we have f(0) = 4. The one-sided limits are
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Since the one-sided limits disagree, lim
x→0

f(x) does not exist, and therefore x = 0 is a

non-removable discontinuity.



At x = 4, we have f(4) = 8. The one-sided limits are
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Since the one-sided limits are equal, lim
x→4

f(x) = 8 = f(4), and hence the function is contin-

uous at x = 4.

Now we can conclude that f(x) possesses one removable discontinuity (at x = 2) and two
non-removable discontinuities (at x = −1 and x = 0).


