MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[5] 1. Since this is a quasirational function, we must consider both limits at infinity. Note that the smallest power of x in the denominator is effectively x (since we treat the x^{2} inside the square root as having half its actual power). First, then,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{5 x+7}{3 x-\sqrt{9 x^{2}+2}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow \infty} \frac{5+\frac{7}{x}}{3-\frac{1}{x} \sqrt{9 x^{2}+2}} \\
& =\lim _{x \rightarrow \infty} \frac{5+\frac{7}{x}}{3-\frac{1}{\sqrt{x^{2}} \sqrt{9 x^{2}+2}}} \\
& =\lim _{x \rightarrow \infty} \frac{5+\frac{7}{x}}{3-\sqrt{9+\frac{2}{x^{2}}}} \\
& =\frac{5+0}{3-\sqrt{9-0}} \\
& =\frac{5}{0}
\end{aligned}
$$

so the limit does not exist.
Next,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{5 x+7}{3 x-\sqrt{9 x^{2}+2}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow-\infty} \frac{5+\frac{7}{x}}{3-\frac{1}{x} \sqrt{9 x^{2}+2}} \\
& =\lim _{x \rightarrow-\infty} \frac{5+\frac{7}{x}}{3-\frac{1}{-\sqrt{x^{2}}} \sqrt{9 x^{2}+2}} \\
& =\lim _{x \rightarrow-\infty} \frac{5+\frac{7}{x}}{3+\sqrt{9+\frac{2}{x^{2}}}} \\
& =\frac{5+0}{3+\sqrt{9-0}} \\
& =\frac{5}{6} .
\end{aligned}
$$

Hence this function has just one horizontal asymptote, namely $y=\frac{5}{6}$.
[5] 2. First observe that $f(3)=3 k-k+1=2 k+1$. This will be defined for all k.
Next,

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}+(k-3) x-3 k}{x^{2}-(k+3) x+3 k}=\lim _{x \rightarrow 3} \frac{(x-3)(x+k)}{(x-3)(x-k)}=\lim _{x \rightarrow 3} \frac{x+k}{x-k}=\frac{3+k}{3-k} .
$$

Thus the limit will exist for all $k \neq 3$.
Finally, we need $\lim _{x \rightarrow 3} f(x)=f(3)$, so we set

$$
\begin{aligned}
\frac{3+k}{3-k} & =2 k+1 \\
3+k & =(2 k+1)(3-k) \\
3+k & =6 k-2 k^{2}-k+3 \\
2 k^{2}-4 k & =0 \\
2 k(k-2) & =0,
\end{aligned}
$$

so $k=0$ or $k=2$.
[10] 3. First, we consider the points where we may obtain division by zero.
From the first definition, this occurs when

$$
x^{2}-1=(x-1)(x+1)=0,
$$

so $x=1$ or $x=-1$. However, this definition only applies when $x<0$, so we reject $x=1$. When $x=-1$, direct substitution produces a $\frac{-4}{0}$ form, so this is a vertical asymptote - and therefore a non-removable discontinuity.
From the second definition, the denominator is zero when $x-2=0$ so $x=2$. Direct substitution results in a $\frac{0}{0}$ indetermine form, so we need to take the limit:

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+4)}{x-2}=\lim _{x \rightarrow 2}(x+4)=6 .
$$

Since the limit exists, $x=2$ is a removable discontinuity.
From the third definition, the denominator is zero when $x-3=0$, so $x=3$. However, this definition applies only when $x \geq 4$, so we may omit this result.

The other way a discontinuity might result is at the points where the definition of the function changes.
At $x=0$, we have $f(0)=4$. The one-sided limits are

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x-3}{x^{2}-1}=3 \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+2 x-8}{x-2}=4
$$

Since the one-sided limits disagree, $\lim _{x \rightarrow 0} f(x)$ does not exist, and therefore $x=0$ is a non-removable discontinuity.

At $x=4$, we have $f(4)=8$. The one-sided limits are

$$
\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} \frac{x^{2}+2 x-8}{x-2}=8 \quad \text { and } \quad \lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} \frac{2 x}{x-3}=8
$$

Since the one-sided limits are equal, $\lim _{x \rightarrow 4} f(x)=8=f(4)$, and hence the function is continuous at $x=4$.
Now we can conclude that $f(x)$ possesses one removable discontinuity (at $x=2$) and two non-removable discontinuities (at $x=-1$ and $x=0$).

