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SOLUTIONS

. Since this is a quasirational function, we must consider both limits at infinity. Note that

the smallest power of x in the denominator is effectively x (since we treat the 22 inside the
square root as having half its actual power). First, then,
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so the limit does not exist.
Next,
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Hence this function has just one horizontal asymptote, namely y = %.
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2. First observe that f(3) =3k — k+ 1= 2k + 1. This will be defined for all k.

3.

Next,
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Thus the limit will exist for all k£ # 3.
Finally, we need lin% f(z) = f(3), so we set
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so k=0 or k=2.

First, we consider the points where we may obtain division by zero.

From the first definition, this occurs when
2> —1=(z—-1)(z+1)=0,

so x = 1 or x = —1. However, this definition only applies when x < 0, so we reject x = 1.
When x = —1, direct substitution produces a %4 form, so this is a vertical asymptote — and

therefore a non-removable discontinuity.

From the second definition, the denominator is zero when z — 2 = 0 so x = 2. Direct

substitution results in a (9) indetermine form, so we need to take the limit:
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Since the limit exists, z = 2 is a removable discontinuity.

From the third definition, the denominator is zero when x — 3 = 0, so x = 3. However, this
definition applies only when = > 4, so we may omit this result.

The other way a discontinuity might result is at the points where the definition of the function
changes.

At x =0, we have f(0) = 4. The one-sided limits are
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Since the one-sided limits disagree, lir% f(x) does not exist, and therefore z = 0 is a
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non-removable discontinuity.



At x = 4, we have f(4) = 8. The one-sided limits are
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Since the one-sided limits are equal, hni f(z) =8 = f(4), and hence the function is contin-
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uous at x = 4.

Now we can conclude that f(x) possesses one removable discontinuity (at z = 2) and two
non-removable discontinuities (at z = —1 and z = 0).



