MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[1] 1. (a) Yes, $f(x)$ is continuous at $x=4$.
(b) No, $f(x)$ is not differentiable at $x=4$; there is a cusp (or a "sharp corner") at this point.
(c) Yes, $f(x)$ is continuous at $x=2$.
(d) Yes, $f(x)$ is differentiable at $x=2$.
(e) No, $f(x)$ is not continuous at $x=0$; it is a non-removable discontinuity.
(f) No, $f(x)$ is not differentiable at $x=0$; a function cannot be differentiable at a point if it is not continuous at that point.
(g) No, $f(x)$ is not continuous at $x=-3$; it is a removable discontinuity.
(h) No, $f(x)$ is not differentiable at $x=-3$; a function cannot be differentiable at a point if it is not continuous at that point.
[5] 2. Observe that $f(x)$ is a rational function, so we need only consider one of the limits at infinity. Then

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}+1\right)^{2}}{x^{3}(9-8 x)} \\
& =\lim _{x \rightarrow \infty} \frac{4 x^{4}+4 x^{2}+1}{9 x^{3}-8 x^{4}} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}} \\
& =\lim _{x \rightarrow \infty} \frac{4+\frac{4}{x^{2}}+\frac{1}{x^{4}}}{\frac{9}{x}-8} \\
& =\frac{4+0+0}{0-8} \\
& =\frac{4}{-8} \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence the only horizontal asymptote is the line $y=-\frac{1}{2}$.
[7]
3. (a) We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-5(x+h)+7\right]-\left[x^{2}-5 x+7\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-5 x-5 h+7-x^{2}+5 x-7}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-5 h}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-5) \\
& =2 x-5 .
\end{aligned}
$$

[3] (b) From part (a), $m=f^{\prime}(1)=-3$. Furthermore, $y=f(1)=3$. Thus the equation of the tangent line is

$$
y-3=-3(x-1) \quad \Longrightarrow \quad y=-3 x+6
$$

[5] 4. (a) First, $f(0)=3 \cdot 0+8=8$, which is defined. Next we must check the one-sided limits to determine if $\lim _{x \rightarrow 0} f(x)$ exists. We have

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x+2}{x-1}=\frac{2}{-1}=-2
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-4 x+4}{x-2}=\frac{4}{-2}=-2 .
$$

Since the one-sided limits agree,

$$
\lim _{x \rightarrow 0} f(x)=-2
$$

and so the limit exists. However, $f(0) \neq \lim _{x \rightarrow 0} f(x)$ so $f(x)$ is discontinuous at $x=0$. Because the limit exists, the discontinuity is removable.
(b) Since part (a) has explored the only point at which the definition of $f(x)$ changes, we must consider any points which would make each part of the piecewise definition undefined. First, then, we set $x^{2}-1=0$ so $x^{2}=1$ and $x= \pm 1$. However, because the first definition applies only for $x<0$, we can neglect $x=1$. Because $f(-1)=\frac{1}{0}$, we know that $\lim _{x \rightarrow 1} f(x)$ does not exist and hence $x=-1$ is a non-removable discontinuity.
The second part of the definition, $f(x)=3 x+8$, is a polynomial and hence is always defined.
Finally, we set $x-2=0$ so $x=2$. Because $f(2)=\frac{0}{0}$, we use the Cancellation Method:

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)^{2}}{x-2}=\lim _{x \rightarrow 2}(x-2)=0 .
$$

Since the limit exists, $x=2$ is a removable discontinuity.

