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SOLUTIONS

[4] 1. (a) This is a quasirational function for which direct substitution yields a § indeterminate
form, so we use the Rationalisation Method. There is a radical in both the numerator
and the denominator, so let’s first try rationalising the numerator:
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Now we’ll rationalise the denominator:
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[4] (b) Direct substitution yields another type of indeterminate form (0o — 00) so we first need
to rewrite the given function in a way that will allow us to use the techniques we’ve
learned. We have
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Now we've obtained a rational function (and note that direct substitution produces a 2

0
indeterminate form) so we can use the Cancellation Method:
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3] (¢) Again, direct substitution results in a % indeterminate form. But recall that, for any 6,

1 — cos®(6) = sin?(6).
This means that we can rewrite the given limit as
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Now we can try using the special trigonometric limit

lim sin(z) =1 or lim L = 1.
z—0 €T z—0 Sm(m)

First let’s concentrate on the two sine functions in the numerator. In order to use the
special limit, we need an x in the denominator for each of them, so we multiply the
numerator and the denominator by z2:
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Now, for the remaining limit, we need a 4x in the numerator for each of the two sine
functions in the denominator. We've already got an 2% there from our previous step, so
we just multiple the numerator and denominator by 42 = 16:
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Note that as x — 0, 4x — 0 as well, so these limits are in the same form as the special
limit. Finally, then, we have
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. Since this is a piecewise function whose behaviour changes at x = 4, we must check the

one-sided limits:
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If the limit exists, then these one-sided limits must be equal, so we set
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and hence k= -8 or k= —1.

(Note that the value of f(z) at x = 4 did not affect our workings, because the limit considers
the behaviour of the function near x = 4, but not at x = 4.)
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so the possible vertical asymptotes are x = 0 and =z = 2.

At x = 0, the numerator is 0 as well, so we need to check the limit:
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Since the limit exists, we can conclude that z = 0 is not a vertical asymptote.

At z = 2, the numerator is also 0, and so we compute
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Now direct substitution results in a _T% form, so & = 2 is a vertical asymptote.
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Near x = 2, the numerator is approximately —5 -5 = —25. From the left as ¢ — 2, v — 2 is
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To determine the one-sided limits of f(x) as  — 2, we consider the expression

a small negative number, and so becomes a large positive number. Hence
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On the other hand, from the right as © — 2, x — 2 is a small positive number, and therefore
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becomes a large negative number. In other words,

li = —00.
S



