MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 2
MATHEMATICS 1000
FALL 2023

SOLUTIONS

[4] 1. (a) This is a quasirational function for which direct substitution yields a $\frac{0}{0}$ indeterminate form, so we use the Rationalisation Method. There is a radical in both the numerator and the denominator, so let's first try rationalising the numerator:

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{\sqrt{2-x}-2}{3-\sqrt{4 x+17}} \cdot \frac{\sqrt{2-x}+2}{\sqrt{2-x}+2} & =\lim _{x \rightarrow-2} \frac{(2-x)-4}{(3-\sqrt{4 x+17})(\sqrt{2-x}+2)} \\
& =\lim _{x \rightarrow-2} \frac{-2-x}{(3-\sqrt{4 x+17})(\sqrt{2-x}+2)}
\end{aligned}
$$

Now we'll rationalise the denominator:

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{\sqrt{2-x}-2}{3-\sqrt{4 x+17}} & =\lim _{x \rightarrow-2} \frac{-2-x}{(3-\sqrt{4 x+17})(\sqrt{2-x}+2)} \cdot \frac{3+\sqrt{4 x+17}}{3+\sqrt{4 x+17}} \\
& =\lim _{x \rightarrow-2} \frac{(-2-x)(3+\sqrt{4 x+17})}{[9-(4 x+17)](\sqrt{2-x}+2)} \\
& =\lim _{x \rightarrow-2} \frac{(-2-x)(3+\sqrt{4 x+17})}{(-4 x-8)(\sqrt{2-x}+2)} \\
& =\lim _{x \rightarrow-2} \frac{-(x+2)(3+\sqrt{4 x+17})}{-4(x+2)(\sqrt{2-x}+2)} \\
& =\lim _{x \rightarrow-2} \frac{-(3+\sqrt{4 x+17})}{-4(\sqrt{2-x}+2)} \\
& =\frac{-(3+3)}{-4(2+2)} \\
& =\frac{3}{8}
\end{aligned}
$$

[4]
(b) Direct substitution yields another type of indeterminate form $(\infty-\infty)$ so we first need to rewrite the given function in a way that will allow us to use the techniques we've learned. We have

$$
\begin{aligned}
\lim _{t \rightarrow 5}\left[t\left(t^{2}-25\right)^{-1}-\left(t^{2}-8 t+15\right)^{-1}\right] & =\lim _{t \rightarrow 5}\left[\frac{t}{t^{2}-25}-\frac{1}{t^{2}-8 t+15}\right] \\
& =\lim _{t \rightarrow 5}\left[\frac{t}{(t-5)(t+5)}-\frac{1}{(t-5)(t-3)}\right] \\
& =\lim _{t \rightarrow 5} \frac{t(t-3)-(t+5)}{(t-5)(t+5)(t-3)} \\
& =\lim _{t \rightarrow 5} \frac{t^{2}-4 t-5}{(t-5)(t+5)(t-3)}
\end{aligned}
$$

Now we've obtained a rational function (and note that direct substitution produces a $\frac{0}{0}$ indeterminate form) so we can use the Cancellation Method:

$$
\begin{aligned}
\lim _{t \rightarrow 5} \frac{t^{2}-4 t-5}{(t-5)(t+5)(t-3)} & =\lim _{t \rightarrow 5} \frac{(t-5)(t+1)}{(t-5)(t+5)(t-3)} \\
& =\lim _{t \rightarrow 5} \frac{t+1}{(t+5)(t-3)} \\
& =\frac{6}{10 \cdot 2} \\
& =\frac{3}{10} .
\end{aligned}
$$

[3] (c) Again, direct substitution results in a $\frac{0}{0}$ indeterminate form. But recall that, for any θ,

$$
1-\cos ^{2}(\theta)=\sin ^{2}(\theta)
$$

This means that we can rewrite the given limit as

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{\sin ^{2}(4 x)}
$$

Now we can try using the special trigonometric limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \quad \text { or } \quad \lim _{x \rightarrow 0} \frac{x}{\sin (x)}=1
$$

First let's concentrate on the two sine functions in the numerator. In order to use the special limit, we need an x in the denominator for each of them, so we multiply the numerator and the denominator by x^{2} :

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{\sin ^{2}(4 x)} \cdot \frac{x^{2}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x^{2}} \cdot \lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2}(4 x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2}(4 x)} \\
& =1 \cdot 1 \cdot \lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2}(4 x)} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2}(4 x)} .
\end{aligned}
$$

Now, for the remaining limit, we need a $4 x$ in the numerator for each of the two sine functions in the denominator. We've already got an x^{2} there from our previous step, so we just multiple the numerator and denominator by $4^{2}=16$:

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2}(4 x)} \cdot \frac{16}{16}=\frac{1}{16} \lim _{x \rightarrow 0} \frac{4 x}{\sin (4 x)} \cdot \lim _{x \rightarrow 0} \frac{4 x}{\sin (4 x)}
$$

Note that as $x \rightarrow 0,4 x \rightarrow 0$ as well, so these limits are in the same form as the special limit. Finally, then, we have

$$
\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(x)}{1-\cos ^{2}(4 x)}=\frac{1}{16} \cdot 1 \cdot 1=\frac{1}{16} .
$$

[3] 2. Since this is a piecewise function whose behaviour changes at $x=4$, we must check the one-sided limits:

$$
\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}}(2 x-k)=8-k
$$

and

$$
\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}}(x+k)^{2}=(4+k)^{2}=k^{2}+8 k+16
$$

If the limit exists, then these one-sided limits must be equal, so we set

$$
\begin{aligned}
8-k & =k^{2}+8 k+16 \\
k^{2}+9 k+8 & =0 \\
(k+8)(k+1) & =0
\end{aligned}
$$

and hence $k=-8$ or $k=-1$.
(Note that the value of $f(x)$ at $x=4$ did not affect our workings, because the limit considers the behaviour of the function near $x=4$, but not at $x=4$.)
3. First we set

$$
\begin{array}{r}
x^{4}-4 x^{3}+4 x^{2}=0 \\
x^{2}\left(x^{2}-4 x+4\right)=0 \\
x^{2}(x-2)^{2}=0,
\end{array}
$$

so the possible vertical asymptotes are $x=0$ and $x=2$.
At $x=0$, the numerator is 0 as well, so we need to check the limit:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{30 x^{2}-5 x^{4}-5 x^{3}}{x^{4}-4 x^{3}+4 x^{2}}=\lim _{x \rightarrow 0} \frac{-5 x^{2}\left(x^{2}+x-6\right)}{x^{2}(x-2)^{2}}=\lim _{x \rightarrow 0} \frac{-5\left(x^{2}+x-6\right)}{(x-2)^{2}}=\frac{15}{2} .
$$

Since the limit exists, we can conclude that $x=0$ is not a vertical asymptote.
At $x=2$, the numerator is also 0 , and so we compute

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{30 x^{2}-5 x^{4}-5 x^{3}}{x^{4}-4 x^{3}+4 x^{2}}=\lim _{x \rightarrow 2} \frac{-5 x^{2}(x-2)(x+3)}{x^{2}(x-2)^{2}}=\lim _{x \rightarrow 2} \frac{-5(x+3)}{x-2}
$$

Now direct substitution results in a $\frac{-25}{0}$ form, so $x=2$ is a vertical asymptote.

To determine the one-sided limits of $f(x)$ as $x \rightarrow 2$, we consider the expression $\frac{-5(x+3)}{x-2}$. Near $x=2$, the numerator is approximately $-5 \cdot 5=-25$. From the left as $x \rightarrow 2, x-2$ is a small negative number, and so $\frac{-5(x+3)}{x-2}$ becomes a large positive number. Hence

$$
\lim _{x \rightarrow 2^{-}} f(x)=\infty
$$

On the other hand, from the right as $x \rightarrow 2, x-2$ is a small positive number, and therefore $\frac{-5(x+3)}{x-2}$ becomes a large negative number. In other words,

$$
\lim _{x \rightarrow 2^{+}} f(x)=-\infty
$$

