MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.3

Math 1000 Worksheet
FALL 2023

SOLUTIONS

1. (a) $\frac{d y}{d x}=2\left(\frac{3}{4} x^{-\frac{1}{4}}\right)-0=\frac{3}{2 x^{\frac{1}{4}}}$
(b) Rewrite: $f(x)=32 x^{5}$

Differentiate: $f^{\prime}(x)=32\left(5 x^{4}\right)=160 x^{4}$
(c) $V^{\prime}(r)=\frac{4}{3} \pi\left(3 r^{2}\right)=4 \pi r^{2}$
(d) Rewrite: $y=4 x^{\frac{1}{2}}-2 x^{-3}-x$

Differentiate: $\frac{d y}{d x}=4\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-2\left(-3 x^{-4}\right)-1=\frac{2}{\sqrt{x}}+\frac{6}{x^{4}}-1$
(e) Rewrite: $f(t)=3 t^{4}+24 t^{3}-t^{2}-8 t$

Differentiate: $f^{\prime}(t)=3\left(4 t^{3}\right)+24\left(3 t^{2}\right)-2 t-8=12 t^{3}+72 t^{2}-2 t-8$
(f) Rewrite: $g(x)=\frac{5}{2}-\frac{1}{2} x^{-1}$

Differentiate: $g^{\prime}(x)=0-\frac{1}{2}\left(-x^{-2}\right)=\frac{1}{2 x^{2}}$
2. When the pebble strikes the ground, $s(t)=0$ so we solve:

$$
-4.9 t^{2}-14.7 t+343=-4.9\left(t^{2}+3 t-70\right)=-4.9(t+10)(t-7)=0
$$

giving $t=-10$ or $t=7$. However, we assume that the pebble was dropped at $t=0$ so we can ignore the negative answer; hence the pebble must strike the ground at 7 sec . The velocity function is

$$
v(t)=s^{\prime}(t)=-9.8 t-14.7
$$

so we compute $v(7)=-9.8(7)-14.7=-83.3$. Hence the pebble is travelling at a velocity of $-83.3 \mathrm{~m} / \mathrm{sec}$.
3. (a) We are told that $s(0)=0$, and since $s(0)=D$, we immediately have $D=0$ and therefore

$$
s(t)=A t^{3}+B t^{2}+C t
$$

We also know that $v(0)=0$, and

$$
v(t)=s^{\prime}(t)=A\left(3 t^{2}\right)+B(2 t)+C(1)=3 A t^{2}+2 B t+C .
$$

Thus $v(0)=C$ and so $C=0$, which means that

$$
s(t)=A t^{3}+B t^{2}
$$

Finally, we are given that $s(2)=s(6)=-36$. This tells us that

$$
8 A+4 B=-36 \quad \text { and } \quad 216 A+36 B=-36
$$

Solving this system of equations gives $A=2$ and $B=-13$.
(b) We now have

$$
s(t)=2 t^{3}-13 t^{2} \quad \text { and } \quad v(t)=s^{\prime}(t)=6 t^{2}-26 t .
$$

We want to solve the equation $v(t)=0$, so we set

$$
6 t^{2}-26 t=2 t(3 t-13)=0
$$

and therefore either $t=0$ or $t=\frac{13}{3} \approx 4.33$. Hence the object is again at rest at approximately 4.33 seconds. Its position at this time is

$$
s\left(\frac{13}{3}\right)=2\left(\frac{13}{3}\right)^{3}-13\left(\frac{13}{3}\right)^{2}=-\frac{2197}{27} \approx-81.37 \text { metres. }
$$

