MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[14] 1. (a) $f(3)=3$
(b) $\lim _{x \rightarrow 3^{-}} f(x)=4$
(c) $\lim _{x \rightarrow 3^{+}} f(x)=4$
(d) $\lim _{x \rightarrow 3} f(x)=4$
(e) $f(0)=0$
(f) $\lim _{x \rightarrow 0^{-}} f(x)=0$
(g) $\lim _{x \rightarrow 0^{+}} f(x)=4$
(h) $\lim _{x \rightarrow 0} f(x)$ does not exist (because the one-sided limits are not equal)
(i) $f(-1)$ is undefined
(j) $\lim _{x \rightarrow-1^{-}} f(x)=\infty$
(k) $\lim _{x \rightarrow-1^{+}} f(x)=-\infty$
(l) $\lim _{x \rightarrow-1} f(x)$ does not exist
(m) $f(-2)=-2$
(n) $\lim _{x \rightarrow-2^{-}} f(x)=-2$
(o) $\lim _{x \rightarrow-2^{+}} f(x)=-2$
(p) $\lim _{x \rightarrow-2} f(x)=-2$
[3] 2. (a) First we consider values to the left of $x=4$:

x	3	3.5	3.9	3.99	3.999
$f(x)$	1.4	1.3636	1.3390	1.3339	1.3333

and then values to the right of $x=4$:

x	5	4.5	4.1	4.01	4.001
$f(x)$	1.2857	1.3077	1.3279	1.3328	1.3333

We can deduce that

$$
\lim _{x \rightarrow 4^{-}} f(x)=1 . \overline{3}=\frac{4}{3} \quad \text { and } \quad \lim _{x \rightarrow 4^{+}} f(x)=\frac{4}{3}
$$

and since these agree, we can conclude that

$$
\lim _{x \rightarrow 4} f(x)=\frac{4}{3}
$$

[3] (b) First we consider values to the left of $x=-2$:

x	-3	-2.5	-2.1	-2.01	-2.001	-2.0001
$f(x)$	-1	-3	-19	-199	-1999	-19999

and then values to the right of $x=-2$:

x	-1	-1.5	-1.9	-1.99	-1.999	-1.9999
$f(x)$	3	5	21	201	2001	20001

We can deduce that

$$
\lim _{x \rightarrow-2^{-}} f(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow-2^{+}} f(x)=\infty
$$

Since these disagree, we can only write that $\lim _{x \rightarrow 2} f(x)$ does not exist.

