MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

	As	SSIGNMENT 1	MATHEMATICS 1000	Fall 2023
			SOLUTIONS	
[14]	1. (a)	f(3) = 3		
	(b)	$\lim_{x \to 3^-} f(x) = 4$		
	(c)	$\lim_{x \to 3^+} f(x) = 4$		
	(d)	$\lim_{x \to 3} f(x) = 4$		
	(e)	f(0) = 0		
	(f)	$\lim_{x \to 0^-} f(x) = 0$		
	(g)	$\lim_{x \to 0^+} f(x) = 4$		
	(h)	$\lim_{x \to 0} f(x) \text{does not}$	exist (because the one-sided limits are not equal)	
	(i)	f(-1) is undefine	ed	
	(j)	$\lim_{x \to -1^-} f(x) = \infty$		
	(k)	$\lim_{x \to -1^+} f(x) = -\infty$		
	(l)	$\lim_{x \to -1} f(x) \text{does not}$	ot exist	
	(m)	f(-2) = -2		
	(n)	$\lim_{x \to -2^-} f(x) = -2$		
	(o)	$\lim_{x \to -2^+} f(x) = -2$		

(p) $\lim_{x \to -2} f(x) = -2$

[3] 2. (a) First we consider values to the left of x = 4:

x	3	3.5	3.9	3.99	3.999
f(x)	1.4	1.3636	1.3390	1.3339	1.3333

and then values to the right of x = 4:

x	5	4.5	4.1	4.01	4.001
f(x)	1.2857	1.3077	1.3279	1.3328	1.3333

We can deduce that

$$\lim_{x \to 4^{-}} f(x) = 1.\overline{3} = \frac{4}{3} \text{ and } \lim_{x \to 4^{+}} f(x) = \frac{4}{3},$$

and since these agree, we can conclude that

$$\lim_{x \to 4} f(x) = \frac{4}{3}.$$

(b) First we consider values to the left of x = -2:

x	-3	-2.5	-2.1	-2.01	-2.001	-2.0001
f(x)	-1	-3	-19	-199	-1999	-19999

and then values to the right of x = -2:

x	-1	-1.5	-1.9	-1.99	-1.999	-1.9999
f(x)	3	5	21	201	2001	20001

We can deduce that

$$\lim_{x \to -2^-} f(x) = -\infty \quad \text{and} \quad \lim_{x \to -2^+} f(x) = \infty.$$

Since these disagree, we can only write that $\lim_{x \to 2} f(x)$ does not exist.

[3]