MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SEction 1.7

Math 1000 Worksheet
FALL 2023

SOLUTIONS

1. (a) The only value of x for which either definition of $f(x)$ is undefined is at $x=2$, which is also the point at which the function definition changes. Here, $f(2)=0$. We do not need to evaluate the one-sided limits because $f(x)$ is defined in the same way to either side of $x=2$. We simply have

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=4 .
$$

However, this means that $f(2) \neq \lim _{x \rightarrow 2} f(x)$. Thus $x=2$ is a removable discontinuity.
(b) First we identify any points at which the function will not be defined. This can only happen when the first part of the definition has a zero denominator, and since

$$
\frac{x+1}{x^{2}-x-2}=\frac{x+1}{(x-2)(x+1)}
$$

this occurs for $x=2$ and $x=-1$. However, $f(x)$ only adopts this definition for $x<1$, so only $x=-1$ is a discontinuity. To classify it, we need to take the limit at $x \rightarrow-1$. Since the numerator is also zero when $x=-1$, we have a $\frac{0}{0}$ indeterminate form. Hence we use the cancellation method:

$$
\lim _{x \rightarrow-1} \frac{x+1}{x^{2}-x-2}=\lim _{x \rightarrow-1} \frac{x+1}{(x-2)(x+1)}=\lim _{x \rightarrow-1} \frac{1}{x-2}=-\frac{1}{3} .
$$

Since the limit exists, $x=-1$ is a removable discontinuity.
We also need to check the points where the definition of $f(x)$ changes; the only such point is $x=1$. We have $f(1)=2$. Also,

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x+1}{x^{2}-x-2}=\lim _{x \rightarrow 1^{-}} \frac{x+1}{(x-2)(x+1)}=\lim _{x \rightarrow 1^{-}} \frac{1}{x-2}=-1
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(3-x^{2}\right)=2
$$

Hence the limit as $x \rightarrow 1$ does not exist, and so $x=1$ is a discontinuity. Since the one-sided limits both exist, however, $x=1$ is a jump discontinuity.
(c) First, note that $\frac{x}{x^{2}-5 x}$ is undefined if

$$
x^{2}-5 x=x(x-5)=0 .
$$

This occurs when $x=0$ or $x=5$, but we ignore the second possibility because this definition only applies for $x<1$. At $x=0$, direct substitution gives a $\frac{0}{0}$ indeterminate form, so we take the limit using the cancellation method:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x}{x^{2}-5 x}=\lim _{x \rightarrow 0} \frac{x}{x(x-5)}=\lim _{x \rightarrow 0} \frac{1}{x-5}=\frac{1}{0-5}=-\frac{1}{5}
$$

Since the limit exists, there is a removable discontinuity at $x=0$.
Next, observe that $\frac{2}{x-9}$ is undefined if $x-9=0$, that is, for $x=9$. Direct substitution produces a $\frac{K}{0}$ form, so this is a vertical asymptote and we can conclude that $\lim _{x \rightarrow 9} f(x)$ does not exist. Thus there is an infinite discontinuity at $x=9$.
Lastly, we must consider $x=1$, since this is where the definition of the piecewise function changes. First, note that

$$
f(1)=\frac{2}{1-9}=-\frac{1}{4} .
$$

Because $f(x)$ is defined differently to the left and to the right of $x=1$, we evaluate the one-sided limits:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x}{x^{2}-5 x}=\frac{1}{1-5}=-\frac{1}{4}
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{2}{x-9}=\frac{2}{1-9}=-\frac{1}{4}
$$

Hence

$$
\lim _{x \rightarrow 1} f(x)=-\frac{1}{4}=f(1)
$$

and so $x=1$ is not a discontinuity at all.
2. Observe that $f(x)$ is a continuous function (since it is a polynomial), and $f(-2)=59$ while $f(2)=-21$. By the Intermediate Value Theorem, there must be at least one x on the interval $[-2,2]$ for which $f(x)=0$, which means that there must be a root of $f(x)$ on that interval.

