MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECtion 1.5

Math 1000 Worksheet
FALL 2023

SOLUTIONS

1. We must first expand the numerator and denominator:

$$
f(x)=\frac{x(x+1)(1-x)}{(2 x+3)^{2}}=\frac{-x^{3}+x}{4 x^{2}+12 x+9} .
$$

The highest power of x in the denominator is x^{2}, so

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{-x^{3}+x}{4 x^{2}+12 x+9} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{-x+\frac{1}{x}}{4+\frac{12}{x}+\frac{9}{x^{2}}}
$$

As $x \rightarrow \infty$, the numerator tends towards $-\infty$, while the denominator tends towards 4 . Hence

$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

As $x \rightarrow-\infty$, the numerator tends towards ∞, while the denominator again tends towards 4. Thus

$$
\lim _{x \rightarrow-\infty} f(x)=\infty
$$

2. (a) Since $f(x)$ is a rational function, we only need to take one of the limits at infinity. The highest power of x in the denominator is x^{4}, so

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{6 x^{3}-6 x^{4}}{2 x^{4}-x^{2}+1} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}}=\lim _{x \rightarrow \infty} \frac{\frac{6}{x}-6}{2-\frac{1}{x^{2}}+\frac{1}{x^{4}}}=\frac{0-6}{2-0+0}=-3
$$

Hence the only horizontal asymptote of $f(x)$ is the line $y=-3$.
(b) Dividing by x^{3} in the numerator and denominator gives

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{6 x^{2}-2 x+5}{7 x^{3}+x^{\frac{3}{2}}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{6}{x}-\frac{2}{x^{2}}+\frac{5}{x^{3}}}{7+\frac{1}{x^{\frac{3}{2}}}}=\frac{0-0+0}{7+0}=0 .
$$

The only horizontal asymptote of $g(x)$ is the line $y=0$ (the x-axis).
(c) First we expand the numerator and denominator:

$$
h(x)=\frac{(x+1)^{3}}{\left(4 x^{2}+1\right)(2 x-3)}=\frac{x^{3}+3 x^{2}+3 x+1}{8 x^{3}-12 x^{2}+2 x-3}
$$

Now we can see that the highest power of x in the denominator is x^{3}, so dividing the numerator and denominator by x^{3} gives

$$
\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} \frac{1+\frac{3}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}}{8-\frac{12}{x}+\frac{2}{x^{2}}-\frac{3}{x^{3}}}=\frac{1+0+0+0}{8-0+0-0}=\frac{1}{8} .
$$

The only horizontal asymptote of $h(x)$ is the line $y=\frac{1}{8}$.
3. (a) Observe that the highest power of x in the denominator is x, so for both limits we'll divide the numerator and denominator by x.
First we take the limit as $x \rightarrow \infty$, recalling that for $x>0, x=\sqrt{x^{2}}$. Hence

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+\sqrt{4 x^{2}+2}}{x-7} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow \infty} \frac{1+\frac{\sqrt{4 x^{2}+2}}{\sqrt{x^{2}}}}{1-\frac{7}{x}}=\lim _{x \rightarrow \infty} \frac{1+\sqrt{4+\frac{2}{x^{2}}}}{1-\frac{7}{x}} \\
& =\frac{1+\sqrt{4+0}}{1-0}=3
\end{aligned}
$$

Next we take the limit as $x \rightarrow-\infty$, recalling that for $x<0, x=-\sqrt{x^{2}}$. So then

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x+\sqrt{4 x^{2}+2}}{x-7} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow-\infty} \frac{1+\frac{\sqrt{4 x^{2}+2}}{-\sqrt{x^{2}}}}{1-\frac{7}{x}}=\lim _{x \rightarrow-\infty} \frac{1-\sqrt{4+\frac{2}{x^{2}}}}{1-\frac{7}{x}} \\
& =\frac{1-\sqrt{4+0}}{1-0}=-1 .
\end{aligned}
$$

Thus the horizontal asymptotes of $f(x)$ are $y=3$ and $y=-1$.
(b) The largest power of x outside the square root is x. The largest power of x inside the square root is x^{2}, but we treat it as if its exponent were reduced by half, making it effectively x as well. Thus we proceed as if the largest power of x in the denominator is x, and this is what we will divide the numerator and the denominator by.
First let's take the limit as $x \rightarrow \infty$. Recalling that for $x>0, x=\sqrt{x^{2}}$, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x+1}{5 x-\sqrt{9 x^{2}-4}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{9 x^{2}-4}}{x}}=\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{9 x^{2}-4}}{\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{5-\sqrt{9-\frac{4}{x^{2}}}}=\frac{2+0}{5-\sqrt{9-0}}=1
\end{aligned}
$$

For the limit as $x \rightarrow-\infty$, we follow the same procedure but note that since $x<0$, $x=-\sqrt{x^{2}}$. Now we have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{2 x+1}{5 x-\sqrt{9 x^{2}-4}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow-\infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{9 x^{2}-4}}{x}}=\lim _{x \rightarrow-\infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{9 x^{2}-4}}{-\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{2+\frac{1}{x}}{5+\sqrt{9-\frac{4}{x^{2}}}}=\frac{2+0}{5+\sqrt{9-0}}=\frac{1}{4}
\end{aligned}
$$

Hence the two horizontal asymptotes are $y=1$ and $y=\frac{1}{4}$.
(c) Again, the largest power of x outside the square root is x and the largest power inside the square root is effectively x as well.

First let's take the limit as $x \rightarrow \infty$. Recalling that for $x>0, x=\sqrt{x^{2}}$, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x+1}{5 x-\sqrt{25 x^{2}-4}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{25 x^{2}-4}}{x}}=\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{25 x^{2}-4}}{\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}}{5-\sqrt{25-\frac{4}{x^{2}}}}=\frac{2+0}{5-\sqrt{25-0}}=\frac{2}{0}
\end{aligned}
$$

Since this is a $\frac{K}{0}$ form, this limit does not exist.
For the limit as $x \rightarrow-\infty$, we follow the same procedure but note that since $x<0$, $x=-\sqrt{x^{2}}$. Now we have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{2 x+1}{5 x-\sqrt{25 x^{2}-4}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\lim _{x \rightarrow-\infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{25 x^{2}-4}}{x}}=\lim _{x \rightarrow-\infty} \frac{2+\frac{1}{x}}{5-\frac{\sqrt{25 x^{2}-4}}{-\sqrt{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{2+\frac{1}{x}}{5+\sqrt{25-\frac{4}{x^{2}}}}=\frac{2+0}{5+\sqrt{25-0}}=\frac{1}{5}
\end{aligned}
$$

Hence the only horizontal asymptotes is $y=\frac{1}{5}$.

