MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SEction 1.4

Math 1000 Worksheet

FALL 2023

SOLUTIONS

1. (a) Direct substitution produces a $\frac{0}{0}$ indeterminate form, so we use the cancellation method:

$$
\lim _{x \rightarrow 4} \frac{2 x^{2}-7 x-4}{3 x^{2}-14 x+8}=\lim _{x \rightarrow 4} \frac{(2 x+1)(x-4)}{(3 x-2)(x-4)}=\lim _{x \rightarrow 4} \frac{2 x+1}{3 x-2}=\frac{9}{10}
$$

exactly as we deduced using the numerical approach in Question 2(a) of the Worksheet for Section 1.2.
(b) Direct substitution produces a $\frac{0}{0}$ indeterminate form. Since this is a rational function, we use the cancellation method:

$$
\lim _{x \rightarrow-1} \frac{3 x^{2}-9 x-12}{x^{3}+7 x^{2}+15 x+9}=\lim _{x \rightarrow-1} \frac{3(x+1)(x-4)}{(x+3)^{2}(x+1)}=\lim _{x \rightarrow-1} \frac{3(x-4)}{(x+3)^{2}}=\frac{-15}{4} .
$$

This corroborates our guess in Question 2(c) of the Worksheet for Section 1.2.
(c) Direct substitution produces a $\frac{0}{0}$ indeterminate form, so we use the cancellation method:

$$
\lim _{t \rightarrow 2} \frac{t^{2}-t-6}{t^{3}-6 t^{2}+12 t-8}=\lim _{t \rightarrow 2} \frac{(t+3)(t-2)}{(t-2)^{3}}=\lim _{t \rightarrow 2} \frac{t+3}{(t-2)^{2}}
$$

Now direct substitution produces a $\frac{K}{0}$ form, so the limit does not exist. As $t \rightarrow 2$ from either the left or the right, $(t+3)$ tends towards 5 (a positive number) while $(t-2)^{2}$ becomes a small positive number (because the squares of non-zero real numbers are always positive). Hence

$$
\lim _{t \rightarrow 2} \frac{t^{2}-t-6}{t^{3}-6 t^{2}+12 t-8}=\infty
$$

(d) In this case, direct substitution results in a $\frac{K}{0}$ form, so we know that the limit does not exist. As $x \rightarrow \frac{1}{2}$ from either side, $3 x$ approaches $\frac{3}{2}$ (a positive number). From the left as $x \rightarrow \frac{1}{2},(2 x-1)$ tends towards a small negative number, so

$$
\lim _{x \rightarrow \frac{1}{2}^{-}} \frac{3 x}{2 x-1}=-\infty
$$

From the right as $x \rightarrow \frac{1}{2},(2 x-1)$ tends towards a small positive number, so

$$
\lim _{x \rightarrow \frac{1}{2}^{+}} \frac{3 x}{2 x-1}=\infty
$$

Because the one-sided limits do not agree, we cannot assign ∞ or $-\infty$ to the limit.
(e) Direct substitution produces a $\frac{0}{0}$ indeterminate form. This is a quasirational function, so we use the rationalisation method:

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{\sqrt{x+8}-2}{x+4} \cdot \frac{\sqrt{x+8}+2}{\sqrt{x+8}+2} & =\lim _{x \rightarrow-4} \frac{(x+8)-4}{(x+4)(\sqrt{x+8}+2)} \\
& =\lim _{x \rightarrow-4} \frac{x+4}{(x+4)(\sqrt{x+8}+2)} \\
& =\lim _{x \rightarrow-4} \frac{1}{\sqrt{x+8}+2}=\frac{1}{4} .
\end{aligned}
$$

(f) Direct substitution produces a $\frac{0}{0}$ indeterminate form, so we use the rationalisation method:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{h^{2}-h}{\sqrt{h+3}-\sqrt{3}} \cdot \frac{\sqrt{h+3}+\sqrt{3}}{\sqrt{h+3}+\sqrt{3}} & =\lim _{h \rightarrow 0} \frac{h(h-1)(\sqrt{h+3}+\sqrt{3})}{(h+3)-3} \\
& =\lim _{h \rightarrow 0} \frac{h(h-1)(\sqrt{h+3}+\sqrt{3})}{h} \\
& =\lim _{h \rightarrow 0}(h-1)(\sqrt{h+3}+\sqrt{3}) \\
& =-2 \sqrt{3} .
\end{aligned}
$$

(g) In this case, we simply need to use direct substitution:

$$
\lim _{x \rightarrow 3} \frac{x-5}{\sqrt{2 x+3}+1}=\frac{-2}{\sqrt{9}+1}=-\frac{1}{2}
$$

(h) Direct substitution produces a $\frac{0}{0}$ indeterminate form. We can rid ourselves of the negative exponent in the numerator by multiplying both the numerator and the denominator by $(x+1)$:

$$
\frac{12(x+1)^{-1}-2}{x^{2}-6 x+5}=\frac{12-2(x+1)}{(x+1)\left(x^{2}-6 x+5\right)}=\frac{-2(x-5)}{(x+1)(x-1)(x-5)}
$$

Now the limit can be rewritten as

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{12(x+1)^{-1}-2}{x^{2}-6 x+5} & =\lim _{x \rightarrow 5} \frac{-2(x-5)}{(x+1)(x-1)(x-5)} \\
& =\lim _{x \rightarrow 5} \frac{-2}{(x+1)(x-1)}=\frac{-2}{24}=-\frac{1}{12} .
\end{aligned}
$$

(i) Direct substitution yields a $\frac{0}{0}$ indeterminate form. This function can be rewritten in the manner of a normal rational function, which means that we can then use the cancellation method:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{h^{2}+9}-\frac{1}{9}}{h} & =\lim _{h \rightarrow 0} \frac{\frac{9-\left(h^{2}+9\right)}{9\left(h^{2}+9\right)}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{-h^{2}}{9\left(h^{2}+9\right)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{9\left(h^{2}+9\right)}=\frac{0}{81}=0 .
\end{aligned}
$$

(j) Direct substitution produces a $\frac{0}{0}$ indeterminate form. The presence of sine functions suggests that we should use the special trigonometric limit. First let's deal with the sine function in the numerator. We need a factor of $8 x$ in the denominator, so we write

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (8 x)}{\sin (2 x)} & =\lim _{x \rightarrow 0} \frac{\sin (8 x)}{8 x} \cdot \frac{8 x}{\sin (2 x)}=\lim _{x \rightarrow 0} \frac{\sin (8 x)}{8 x} \cdot \lim _{x \rightarrow 0} \frac{8 x}{\sin (2 x)} \\
& =1 \cdot \lim _{x \rightarrow 0} \frac{8 x}{\sin (2 x)}=\lim _{x \rightarrow 0} \frac{8 x}{\sin (2 x)} .
\end{aligned}
$$

To deal with the remaining sine function, observe that we can factor 4 out of the numerator to obtain a factor of $2 x$:

$$
\lim _{x \rightarrow 0} \frac{\sin (8 x)}{\sin (2 x)}=4 \lim _{x \rightarrow 0} \frac{2 x}{\sin (2 x)}=4 \lim _{x \rightarrow 0} \frac{1}{\left(\frac{\sin (2 x)}{2 x}\right)}=4 \cdot \frac{1}{1}=4 .
$$

Alternatively, we could use the double-angle formula for sine to write

$$
\sin (8 x)=2 \sin (4 x) \cos (4 x)=4 \sin (2 x) \cos (2 x) \cos (4 x),
$$

so

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (8 x)}{\sin (2 x)} & =\lim _{x \rightarrow 0} \frac{4 \sin (2 x) \cos (2 x) \cos (4 x)}{\sin (2 x)} \\
& =4 \lim _{x \rightarrow 0} \cos (2 x) \cos (4 x)=4(1)(1)=4
\end{aligned}
$$

by direct substitution.
(k) Direct substitution yields a $\frac{0}{0}$ indeterminate form, so we will use a special trigonometric limit. Observe that

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(x)}{x} & =\lim _{x \rightarrow 0} \frac{[1-\cos (x)][1+\cos (x)]}{x} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x} \cdot \lim _{x \rightarrow 0}[1+\cos (x)] \\
& =0 \cdot 2=0 .
\end{aligned}
$$

(ℓ) Direct substitution produces a $\frac{0}{0}$ indeterminate form. We can use the special trigonometric limit:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin \left(3 x^{2}\right)}{x \sin (x)} & =\lim _{x \rightarrow 0} \frac{3 x \sin \left(3 x^{2}\right)}{3 x^{2} \sin (x)}=\lim _{x \rightarrow 0} 3 \cdot \frac{x}{\sin (x)} \cdot \frac{\sin \left(3 x^{2}\right)}{3 x^{2}} \\
& =3 \lim _{x \rightarrow 0} \frac{x}{\sin (x)} \cdot \lim _{x \rightarrow 0} \frac{\sin \left(3 x^{2}\right)}{3 x^{2}} .
\end{aligned}
$$

Observe that as $x \rightarrow 0,3 x^{2} \rightarrow 0$ as well, so

$$
\lim _{x \rightarrow 0} \frac{\sin \left(3 x^{2}\right)}{x \sin (x)}=3(1)(1)=3
$$

(m) By direct substitution, we obtain

$$
\lim _{x \rightarrow \pi} \frac{\tan \left(\frac{x}{4}\right)}{1-\cos (x)}=\frac{\tan \left(\frac{\pi}{4}\right)}{1-\cos (\pi)}=\frac{1}{1-(-1)}=\frac{1}{2}
$$

(n) Direct substitution produces a $\frac{0}{0}$ indeterminate form. Because this problem involves secant functions, we need to rewrite it in terms of other trigonometric functions if we're to use a special trigonometric limit. In particular, recall that $\sec (\theta)=\frac{1}{\cos (\theta)}$ so we have

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{1-\sec (\theta)}{\theta \sec (\theta)} & =\lim _{\theta \rightarrow 0} \frac{1-\frac{1}{\cos (\theta)}}{\frac{\theta}{\cos (\theta)}}=\lim _{\theta \rightarrow 0} \frac{\frac{\cos (\theta)-1}{\cos (\theta)}}{\frac{\theta}{\cos (\theta)}} \\
& =\lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{\theta}=0 .
\end{aligned}
$$

(o) Observe that $|x-2|$ changes its definition at $x=2$:

$$
|x-2|=\left\{\begin{array}{cc}
-(x-2) & \text { if } x<2 \\
x-2 & \text { if } x \geq 2
\end{array}\right.
$$

Thus we need to examine the one-sided limits. From the left,

$$
\lim _{x \rightarrow 2^{-}} \frac{|x-2|-2}{x}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)-2}{x}=\lim _{x \rightarrow 2^{-}} \frac{-x}{x}=\lim _{x \rightarrow 2^{-}}(-1)=-1 .
$$

From the right,

$$
\lim _{x \rightarrow 2^{+}} \frac{|x-2|-2}{x}=\lim _{x \rightarrow 2^{+}} \frac{(x-2)-2}{x}=\lim _{x \rightarrow 2^{+}} \frac{x-4}{x}=\frac{-2}{2}=-1 .
$$

Since the one-sided limits agree, we can conclude that

$$
\lim _{x \rightarrow 2} \frac{|x-2|-2}{x}=-1
$$

(p) Although $x \rightarrow-2,|x-2|$ does not change its definition at $x=-2$, so we can just substitute directly:

$$
\lim _{x \rightarrow-2} \frac{|x-2|-2}{x}=\frac{|-4|-2}{-2}=-1
$$

(q) We must check the one-sided limits, since $|x|$ changes its definition at $x=0$. For $x<0$, $|x|=-x$ so we can write

$$
\lim _{x \rightarrow 0^{-}} \frac{x^{2}-4 x}{7 x-|x|}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}-4 x}{7 x-(-x)}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}-4 x}{8 x}=\lim _{x \rightarrow 0^{-}} \frac{x-4}{8}=-\frac{1}{2} .
$$

For $x>0,|x|=x$ so we have

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{2}-4 x}{7 x-|x|}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-4 x}{7 x-x}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-4 x}{6 x}=\lim _{x \rightarrow 0^{+}} \frac{x-4}{6}=-\frac{2}{3} .
$$

Since the one-sided limits are not equal, we can conclude that the given limit does not exist.
2. (a) Since $f(x)$ changes its definition at $x=1$, we must check the one-sided limits. From the left,

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+3 x+5\right)=9
$$

From the right,

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(7 x-2)=5
$$

Since these are not equal, $\lim _{x \rightarrow 1} f(x)$ does not exist.
(b) Again, $g(x)$ changes its definition at $x=1$, so we must check the one-sided limits. From the left,

$$
\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+3 x+5\right)=9
$$

From the right,

$$
\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}(7 x+2)=9
$$

Since the one-sided limits agree, we can conclude that $\lim _{x \rightarrow 1} g(x)=9$ as well.
(c) This time, $h(x)$ does not change its definition at $x=1$, so we can simply write

$$
\lim _{x \rightarrow 1} h(x)=\lim _{x \rightarrow 1}(7 x-2)=5
$$

3. (a) We set the denominator equal to zero, so that

$$
x^{3}+3 x^{2}-9 x+5=(x+5)(x-1)^{2}=0
$$

Hence the only possible vertical asymptotes are $x=-5$ and $x=1$.
When $x=-5$, the numerator is $-54 \neq 0$, so we have a $\frac{K}{0}$ form. Hence $x=-5$ is a vertical asymptote. From the left as $x \rightarrow-5$, the denominator is a small negative number, so given that the numerator is also negative,

$$
\lim _{x \rightarrow-5^{-}} \frac{5 x-4-x^{2}}{x^{3}+3 x^{2}-9 x+5}=\infty
$$

From the right as $x \rightarrow-5$, the denominator is a small positive number, so

$$
\lim _{x \rightarrow-5^{+}} \frac{5 x-4-x^{2}}{x^{3}+3 x^{2}-9 x+5}=-\infty
$$

When $x=1$, however, the numerator is zero, so we have to take the limit using the cancellation method:

$$
\lim _{x \rightarrow 1} \frac{5 x-4-x^{2}}{x^{3}+3 x^{2}-9 x+5}=\lim _{x \rightarrow 1} \frac{-(x-4)(x-1)}{(x+5)(x-1)^{2}}=\lim _{x \rightarrow 1} \frac{4-x}{(x+5)(x-1)}
$$

Now direct substitution produces a $\frac{K}{0}$ form (with $K=3$) so $x=1$ is a vertical asymptote after all. From the left as $x \rightarrow 1$, the denominator is a small negative number, so

$$
\lim _{x \rightarrow 1^{-}} \frac{5 x-4-x^{2}}{x^{3}+3 x^{2}-9 x+5}=-\infty
$$

From the right as $x \rightarrow 1$, the denominator is a small positive number, so

$$
\lim _{x \rightarrow 1^{+}} \frac{5 x-4-x^{2}}{x^{3}+3 x^{2}-9 x+5}=\infty .
$$

(b) We set the denominator equal to zero, so that

$$
5 x-x^{2}-4=-(x-4)(x-1)=0 .
$$

Hence the only possible vertical asymptotes are $x=4$ and $x=1$.
When $x=4$, the numerator is $81 \neq 0$, so we have a $\frac{K}{0}$ form. Hence $x=4$ is a vertical asymptote. From the left as $x \rightarrow 4$, the denominator is a small positive number, so

$$
\lim _{x \rightarrow 4^{-}} \frac{x^{3}+3 x^{2}-9 x+5}{5 x-4-x^{2}}=\infty
$$

From the right as $x \rightarrow 4$, the denominator is a small negative number, so

$$
\lim _{x \rightarrow 4^{+}} \frac{x^{3}+3 x^{2}-9 x+5}{5 x-4-x^{2}}=-\infty
$$

When $x=1$, however, the numerator is zero, so we take the limit using the cancellation method:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}+3 x^{2}-9 x+5}{5 x-4-x^{2}} & =\lim _{x \rightarrow 1} \frac{(x+5)(x-1)^{2}}{-(x-4)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{(x+5)(x-1)}{4-x}=0
\end{aligned}
$$

Because $\lim _{x \rightarrow 1} f(x)$ exists, $x=1$ is not a vertical asymptote.
4. Using the inequality, we can write

$$
-\cot (x) \leq \cot (x) \sin \left(\frac{1}{x}\right) \leq \cot (x)
$$

if $\cot (x)>0$ or

$$
-\cot (x) \geq \cot (x) \sin \left(\frac{1}{x}\right) \geq \cot (x)
$$

if $\cot (x)<0$. Furthermore,

$$
\lim _{x \rightarrow \frac{\pi}{2}} \cot (x)=\cot \left(\frac{\pi}{2}\right)=0 \quad \text { and } \quad \lim _{x \rightarrow \frac{\pi}{2}}-\cot (x)=-\cot \left(\frac{\pi}{2}\right)=0
$$

Thus, by the Squeeze Theorem, we conclude that $\lim _{x \rightarrow \frac{\pi}{2}} \cot (x) \sin \left(\frac{1}{x}\right)=0$ as well.
(Note that if you're not comfortable evaluating a cotangent directly, you can always use the identity $\cot (x)=\frac{\cos (x)}{\sin (x)}$. Here, for instance, $\cot \left(\frac{\pi}{2}\right)=\frac{\cos \left(\frac{\pi}{2}\right)}{\sin \left(\frac{\pi}{2}\right)}=\frac{0}{1}=0$.)
5. We know that

$$
-1 \leq \cos \left(\frac{\pi}{2 x}\right) \leq 1
$$

If we multiply all parts of the inequality by some $x>0$, we get

$$
-x \leq x \cos \left(\frac{\pi}{2 x}\right) \leq x
$$

On the other hand, if $x<0$, the same multiplication flips the direction of the inequalities, giving

$$
x \leq x \cos \left(\frac{\pi}{2 x}\right) \leq-x
$$

We can combine these two cases if we recall that $|x|=x$ for $x>0$ and $|x|=-x$ for $x<0$. Thus we have

$$
-|x| \leq x \cos \left(\frac{\pi}{2 x}\right) \leq|x|
$$

We know that $\lim _{x \rightarrow 0}|x|=0$ and so

$$
\lim _{x \rightarrow 0}-|x|=-\lim _{x \rightarrow 0}|x|=0
$$

as well. By the Squeeze Theorem, then, we also have

$$
\lim _{x \rightarrow 0} x \cos \left(\frac{\pi}{2 x}\right)=0
$$

