MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) Using Basic Limit Property \#2,

$$
\lim _{x \rightarrow p}[f(x)-g(x)]=\lim _{x \rightarrow p} f(x)-\lim _{x \rightarrow p} g(x)=-5-4=-9 .
$$

(b) Using Basic Limit Property \#s 2 and 3,

$$
\lim _{x \rightarrow p}[g(x)-2 f(x)]=\lim _{x \rightarrow p} g(x)-2 \lim _{x \rightarrow p} f(x)=4-2(-5)=14 .
$$

(c) Using Basic Limit Property \#5,

$$
\lim _{x \rightarrow p} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow p} f(x)}{\lim _{x \rightarrow p} g(x)}=\frac{-5}{4}=-\frac{5}{4} .
$$

(d) Using Basic Limit Property \#4 and the property for radicals of functions,

$$
\lim _{x \rightarrow p} f(x) \sqrt{g(x)}=\lim _{x \rightarrow p} f(x) \cdot \sqrt{\lim _{x \rightarrow p} g(x)}=-5 \cdot \sqrt{4}=-10 .
$$

2. (a) By direct substitution, $\lim _{x \rightarrow 5}\left(x^{2}-9 x-3\right)=5^{2}-9(5)+3=25-45+3=-17$.
(b) By direct substitution, $\lim _{x \rightarrow-3} \frac{\sqrt{1-x}}{x}=\frac{\sqrt{4}}{-3}=-\frac{2}{3}$.
(c) By direct substitution, $\lim _{h \rightarrow 0} \frac{\cos (h)}{2^{h}}=\frac{\cos (0)}{2^{0}}=1$.
(d) Observe that

$$
|x-2|=\left\{\begin{array}{cc}
x-2 & \text { for } x \geq 2 \\
-(x-2) & \text { for } x<2
\end{array}\right.
$$

Since this is a piecewise function which changes definition at $x=2$, we must evaluate both the lefthand and righthand limits as $x \rightarrow 2$.
For the lefthand limit (where $x<2$), we can write $|x-2|=-(x-2)$, giving

$$
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x-2}=\lim _{x \rightarrow 2^{-}}-1=-1
$$

For the righthand limit (where $x>2$), we can write $|x-2|=x-2$, giving

$$
\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{x-2}=\lim _{x \rightarrow 2^{+}} 1=1
$$

Since the one-sided limits are not equal, we can conclude that $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$ does not exist.
3. (a) Although $f(x)$ is a piecewise function, its definition does not change at $x=\frac{\pi}{6}$, so we can use direct substitution. Since $f(x)=\cos (x)$ for all $x \leq 0$,

$$
\lim _{x \rightarrow-\frac{\pi}{6}} f(x)=\lim _{x \rightarrow-\frac{\pi}{6}} \cos (x)=\cos \left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

(b) Since $f(x)$ changes its definition at $x=0$, we must consider the one-sided limits. Immediately to the left of $x=0, f(x)=\cos (x)$ so

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \cos (x)=\cos (0)=1
$$

Immediately to the right of $x=0, f(x)=1-4 x$ so

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1-4 x)=1-4(0)=1 .
$$

Since these are in agreement,

$$
\lim _{x \rightarrow 0} f(x)=1
$$

(c) Again, because $f(x)$ changes its definition at $x=3$, we must calculate the one-sided limits. Immediately to the left of $x=3, f(x)=1-4 x$ so

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(1-4 x)=1-4(3)=-11 .
$$

Immediately to the right of $x=3, f(x)=\frac{9}{x}$ so

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \frac{9}{x}=\frac{9}{3}=3
$$

Since the one-sided limits are not equal, $\lim _{x \rightarrow 3} f(x)$ does not exist.
4. Since this is a piecewise function whose behaviour changes at $x=-2$, we must check the one-sided limits:

$$
\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} k^{2} x=-2 k^{2}
$$

and

$$
\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}}(4 k-x)=4 k+2 .
$$

If the limit exists, then these one-sided limits must be equal, so we set

$$
\begin{aligned}
-2 k^{2} & =4 k+2 \\
2 k^{2}+4 k+2 & =0 \\
2(k+1)^{2} & =0,
\end{aligned}
$$

and hence $k=-1$.
(Note that the second part of the definition of $f(x)$ did not affect our workings because it applies only for $x=-2$, which has no effect on the limit as x approaches -2 .)

