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SOLUTIONS

[4] 1. We begin by finding the first derivative:
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Now we differentiate again:
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[5] 2. Let V be the volume of the cone, r be its radius and h be its height. We know that r is

constant and fl—’t‘ = —%, and we want to find % when h =1 and V = 37. Then we have
V= gr2h
av m ,dh
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dt 3 dt

From the original equation, when h =1 and V = 3m, r = 3 so then
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and therefore the cone’s volume is shrinking by m cubic metres per hour.



[5] 3. Suppose that P is the point on the stage closest to the spotlight. Let x be the distance
from the woman to P, y be the distance from the spotlight to P, ¢ be the distance from the
spotlight to the woman, and 6 be the angle be the lines representing the last two distances,
as in Figure 1. We are given that y = 60 and, if we assume that the woman is walking away
from P, then Z—f = 3. (We could alternatively set up the problem by assuming that the
woman is walking towards P. In the case, % = —3, but the details of the solution remain

the same.) We want to find % at the moment when x = 25.
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Figure 1: A spotlight shines on a woman walking across a stage.

From trigonometry, we can see that
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where we have used the fact that y is a constant. In order to determine sec?(f) at the given
moment, we can use the Pythagorean theorem to conclude that when x = 25 and y = 60,

¢ = V252 + 602 = V4225 = 65.

Thus cos(f) = & = 12 and so sec?(f) = (}—2)2 = 19 Now we see that
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and so the spotlight is rotating at a rate of 2= radians per second. (If we assumed from the
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start that the woman was walking away from P, the rate would be negative.)

4. (a)

We need to find any critical points. Note that f’(z) is undefined only when z = 1,
which is not in the domain of f(z), so we need only consider f’(z) = 0. Thus we set
4

—z(5r +4) = 0sox = 0or x = —z. We can now construct the sign pattern found

in Figure 2. We can see that f(z) is increasing for —% <x <0 and decreasing for

x < —‘51, 0<z<1andx>1. Furthermore, we have a relative minimum at x = —‘51 )

We have a relative maximum at z = 0.

Figure 2: Sign patterns for Question 6(a).

We find the hypercritical points. Again, f”(z) is undefined only at z = 1, which is not in
the domain of f(x). Furthermore, f”(x) = 0 when 2(5z+1)(x+2) = 0, that is when z =
—% or x = —2. We therefore construct the sign pattern found in Figure 2. We conclude

that f(x) is concave upward for —2 < x < —% and x > 1 and concave downward for

xr < —2 and —% < x < 1. The points of inflection occur at x = —2 and z = —%.



