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SOLUTIONS

[4] 1. We begin by finding the first derivative:
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Now we differentiate again:
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[5] 2. Let V be the volume of the cone, r be its radius and h be its height. We know that r is
constant and dh

dt
= −1

3
, and we want to find dV

dt
when h = 1 and V = 3π. Then we have
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From the original equation, when h = 1 and V = 3π, r = 3 so then

dV

dt
=
π

3
(32)
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and therefore the cone’s volume is shrinking by π cubic metres per hour.



[5] 3. Suppose that P is the point on the stage closest to the spotlight. Let x be the distance
from the woman to P , y be the distance from the spotlight to P , ` be the distance from the
spotlight to the woman, and θ be the angle be the lines representing the last two distances,
as in Figure 1. We are given that y = 60 and, if we assume that the woman is walking away
from P , then dx

dt
= 3. (We could alternatively set up the problem by assuming that the

woman is walking towards P . In the case, dx
dt

= −3, but the details of the solution remain
the same.) We want to find dθ

dt
at the moment when x = 25.
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Figure 1: A spotlight shines on a woman walking across a stage.

From trigonometry, we can see that

tan(θ) =
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y

d
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,

where we have used the fact that y is a constant. In order to determine sec2(θ) at the given
moment, we can use the Pythagorean theorem to conclude that when x = 25 and y = 60,

` =
√

252 + 602 =
√

4225 = 65.

Thus cos(θ) = 60
65

= 12
13

and so sec2(θ) =
(
13
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)2
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. Now we see that
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=
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,



and so the spotlight is rotating at a rate of 36
845

radians per second. (If we assumed from the

start that the woman was walking away from P , the rate would be negative.)

4.[3] (a) We need to find any critical points. Note that f ′(x) is undefined only when x = 1,
which is not in the domain of f(x), so we need only consider f ′(x) = 0. Thus we set
−x(5x + 4) = 0 so x = 0 or x = −4

5
. We can now construct the sign pattern found

in Figure 2. We can see that f(x) is increasing for −4
5
< x < 0 and decreasing for

x < −4
5
, 0 < x < 1 and x > 1. Furthermore, we have a relative minimum at x = −4

5
.

We have a relative maximum at x = 0.
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Figure 2: Sign patterns for Question 6(a).

[3] (b) We find the hypercritical points. Again, f ′′(x) is undefined only at x = 1, which is not in
the domain of f(x). Furthermore, f ′′(x) = 0 when 2(5x+1)(x+2) = 0, that is when x =
−1

5
or x = −2. We therefore construct the sign pattern found in Figure 2. We conclude

that f(x) is concave upward for −2 < x < −1
5

and x > 1 and concave downward for

x < −2 and −1
5
< x < 1. The points of inflection occur at x = −2 and x = −1

5
.


