SOLUTIONS

[5] 1. By the limit definition,

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{\frac{4(x+h)}{(x+h)-3}-\frac{4 x}{x-3}}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{4(x+h)(x-3)}{(x-3)(x+h-3)}-\frac{4 x(x+h-3)}{(x-3)(x+h-3)}\right] \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{2}+4 h x-12 x-12 h-4 x^{2}-4 h x+12 x}{h(x-3)(x+h-3)} \\
& =\lim _{h \rightarrow 0} \frac{-12 h}{h(x-3)(x+h-3)} \\
& =\lim _{h \rightarrow 0} \frac{-12}{(x-3)(x+h-3)} \\
& =\frac{-12}{(x-3)^{2}}
\end{aligned}
$$

[7] 2. By the limit definition,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)+4}-\sqrt{x+4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+4}-\sqrt{x+4}}{h} \cdot \frac{\sqrt{x+h+4}+\sqrt{x+4}}{\sqrt{x+h+4}+\sqrt{x+4}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h+4)-(x+4)}{h[\sqrt{x+h+4}+\sqrt{x+4}]} \\
& =\lim _{h \rightarrow 0} \frac{h}{h[\sqrt{x+h+4}+\sqrt{x+4}]} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+4}+\sqrt{x+4}} \\
& =\frac{1}{2 \sqrt{x+4}} .
\end{aligned}
$$

At $x=-3$, the slope of the tangent line is

$$
f^{\prime}(-3)=\frac{1}{2 \sqrt{-3+4}}=\frac{1}{2}
$$

The y-coordinate when $x=-3$ is

$$
f(-3)=\sqrt{-3+4}=1
$$

Thus the equation of the tangent line has the form

$$
\begin{aligned}
y & =\frac{1}{2} x+b \\
1 & =\frac{1}{2}(-3)+b \\
\frac{5}{2} & =b,
\end{aligned}
$$

and so the equation of the tangent line is

$$
y=\frac{1}{2} x+\frac{5}{2} .
$$

[4] 3. (a) Note that

$$
f(1)=3\left(1^{2}\right)-4(1)+1=0 .
$$

We use the alternative definition of the derivative

$$
f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{f(x)-0}{x-1}=\lim _{x \rightarrow 1} \frac{f(x)}{x-1}
$$

and consider the one-sided limits. From the left,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \frac{f(x)}{x-1} & =\lim _{x \rightarrow 1^{-}} \frac{4 x^{2}-8 x+4}{x^{2}-1} \cdot \frac{1}{x-1} \\
& =\lim _{x \rightarrow 1^{-}} \frac{4\left(x^{2}-2 x+1\right)}{(x-1)\left(x^{2}-1\right)} \\
& =\lim _{x \rightarrow 1^{-}} \frac{4(x-1)^{2}}{(x-1)^{2}(x+1)} \\
& =\lim _{x \rightarrow 1^{-}} \frac{4}{x+1} \\
& =2 .
\end{aligned}
$$

From the right,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{f(x)}{x-1} & =\lim _{x \rightarrow 1^{+}} \frac{3 x^{2}-4 x+1}{x-1} \\
& =\lim _{x \rightarrow 1^{+}} \frac{(x-1)(3 x-1)}{x-1} \\
& =\lim _{x \rightarrow 1^{+}}(3 x-1) \\
& =2
\end{aligned}
$$

Since the one-sided limits are equal, $f^{\prime}(1)=2$ and so $f(x)$ is differentiable at $x=1$.
[4] (b) Note that

$$
g(1)=1-1=0 .
$$

We again use the alternative definition of the derivative

$$
g^{\prime}(1)=\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}=\lim _{x \rightarrow 1} \frac{g(x)-0}{x-1}=\lim _{x \rightarrow 1} \frac{g(x)}{x-1}
$$

and consider the one-sided limits. From the left,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \frac{g(x)}{x-1} & =\lim _{x \rightarrow 1^{-}} \frac{4 x^{2}-8 x+4}{x^{2}-1} \cdot \frac{1}{x-1} \\
& =\lim _{x \rightarrow 1^{-}} \frac{4\left(x^{2}-2 x+1\right)}{(x-1)\left(x^{2}-1\right)} \\
& =\lim _{x \rightarrow 1^{-}} \frac{4(x-1)^{2}}{(x-1)^{2}(x+1)} \\
& =\lim _{x \rightarrow 1^{-}} \frac{4}{x+1} \\
& =2 .
\end{aligned}
$$

From the right,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{g(x)}{x-1} & =\lim _{x \rightarrow 1^{+}} \frac{1-x}{x-1} \\
& =\lim _{x \rightarrow 1^{+}} \frac{-(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1^{+}}(-1) \\
& =-1 .
\end{aligned}
$$

This time, the one-sided limits are not equal, and so $g^{\prime}(1)$ is not defined. Hence $g(x)$ is not differentiable at $x=1$.

