MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 3
MATHEMATICS 1000
FALL 2022

SOLUTIONS

[6] 1. In the denominator, the largest power of x outside the square root is x, while inside the square root it is x^{2}, which treat as $x^{\frac{1}{2} \cdot 2}=x$ as well. Either way, the dominant term is x. Since this is a quasirational function, we need to consider both limits at infinity. First, as $x \rightarrow \infty$, recall that $x=\sqrt{x^{2}}$ and so

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{7-x}{5 x+\sqrt{16 x^{2}-3 x+4}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{7}{x}-1}{5+\frac{1}{x} \cdot \sqrt{16 x^{2}-3 x+4}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{7}{x}-1}{5+\frac{1}{\sqrt{x^{2}}} \cdot \sqrt{16 x^{2}-3 x+4}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{7}{x}-1}{5+\sqrt{16-\frac{3}{x}+\frac{4}{x^{2}}}} \\
& =\frac{0-1}{5+\sqrt{16-0+0}} \\
& =-\frac{1}{9} .
\end{aligned}
$$

As $x \rightarrow-\infty, x=-\sqrt{x^{2}}$ so

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{7-x}{5 x+\sqrt{16 x^{2}-3 x+4}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{7}{x}-1}{5+\frac{1}{x} \cdot \sqrt{16 x^{2}-3 x+4}} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{7}{x}-1}{5+\frac{1}{-\sqrt{x^{2}}} \cdot \sqrt{16 x^{2}-3 x+4}} \\
& =\lim _{x \rightarrow-\infty} \frac{\frac{7}{x}-1}{5-\sqrt{16-\frac{3}{x}+\frac{4}{x^{2}}}} \\
& =\frac{0-1}{5-\sqrt{16-0+0}} \\
& =-1
\end{aligned}
$$

Hence $f(x)$ has two horizontal asymptotes: $y=-\frac{1}{9}$ and $y=-1$.
[6] 2. First observe that

$$
f(3)=\frac{3 k}{3 k+5}
$$

and this is defined for all $k \neq-\frac{5}{3}$.
Next, we have

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(k x^{2}-2 k x\right)=9 k-6 k=3 k
$$

while

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(4 x-9 k^{2}\right)=12-9 k^{2} .
$$

In order for $f(x)$ to be continuous at $x=3$, the one-sided limits must be equal, so we set

$$
\begin{aligned}
3 k & =12-9 k^{2} \\
9 k^{2}+3 k-12 & =0 \\
3(3 k+4)(k-1) & =0,
\end{aligned}
$$

and therefore either $k=-\frac{4}{3}$ or $k=1$.
When $k=-\frac{4}{3}$,

$$
f(3)=-4 \quad \text { and } \quad \lim _{x \rightarrow 3} f(x)=-4
$$

so $f(x)$ is continuous at $x=3$.
When $k=1$,

$$
f(3)=\frac{3}{8} \quad \text { and } \quad \lim _{x \rightarrow 3} f(x)=3
$$

so $f(x)$ is not continuous at $x=3$.
Hence $k=-\frac{4}{3}$ is the only solution.
[2] 3. (a) We have

$$
f(-2)=(-2)^{2}+3(-2)-6=-8 .
$$

The one-sided limits are
$\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} \frac{x^{2}+6 x+9}{x^{2}-9}=-\frac{1}{5} \quad$ and $\quad \lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}}\left(x^{2}+3 x-6\right)=-8$.
Thus $\lim _{x \rightarrow-2} f(x)$ does not exist, and so $x=-2$ is a non-removable discontinuity.
(b) We have

$$
f(1)=\frac{1^{2}+1-20}{1^{2}-8(1)+16}=-2
$$

The one-sided limits are

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+3 x-6\right)=-2 \quad \text { and } \quad \lim _{x \rightarrow 1^{-}} \frac{x^{2}+x-20}{x^{2}-8 x+16}=-2,
$$

so

$$
\lim _{x \rightarrow 1} f(x)=-2=f(1)
$$

and thus $f(x)$ is in fact continuous at $x=1$.
[4] (c) Now we consider any values of x that would make any part of the definition of $f(x)$ undefined.
The first part will be undefined if

$$
x^{2}-9=0 \quad \Longrightarrow \quad(x-3)(x+3)=0
$$

that is, if $x=3$ or $x=-3$. However, because this part of the definition applies only for $x<-2$, we reject $x=3$. Thus $x=-3$ is a discontinuity, and because

$$
\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3} \frac{x^{2}+6 x+9}{x^{2}-9}=\lim _{x \rightarrow-3} \frac{(x+3)^{2}}{(x-3)(x+3)}=\lim _{x \rightarrow-3} \frac{x+3}{x-3}=0
$$

the discontinuity at $x=-3$ is removable.
The second part of the definition is a polynomial, and is therefore never undefined. The third part is undefined if

$$
x^{2}-8 x+16=0 \quad \Longrightarrow \quad(x-4)^{2}=0
$$

that is, if $x=4$. Since this part of the definition applies for $x \geq 1$, then, $x=4$ is a discontinuity. Because

$$
\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x^{2}-8 x+16}=\lim _{x \rightarrow 4} \frac{(x-4)(x+5)}{(x-4)^{2}}=\lim _{x \rightarrow 4} \frac{x+5}{x-4}
$$

does not exist (since a $\frac{K}{0}$ form results), the discontinuity at $x=4$ is non-removable.

