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SOLUTIONS

. Since this is a quasirational function, we must consider both limits at infinity. Note that
the smallest power of z in the denominator is effectively x (since we treat the 22 inside the
square root as having half its actual power). First, then,
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Next,
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Hence this function has two horizontal asymptotes: y = —% and y = 2.



[4] 2. First observe that f(—2) =9 — 2k. This will be defined for all k.
Next,

lim f(z) = lim2[(k:x)2 — 3kx + k] = lim [k*2® — 3k + k] = 4k* + 6k + k = 4k* + Tk.
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Thus the limit also exists for all k.

Finally, we need lim2 f(z) = f(=2), so we set
T——

4> + Tk =9 — 2k
42+ 9k —-9=0
(4k —3)(k+3) =0

SO k:% or k=-3.

[2] 3. (a) We have f(0) = —1. The one-sided limits are
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Since the one-sided limits are equal, hII(l) f(z) = —1 = f(0), and hence the function is
T—
continuous at x = 0.
2] (b) We have f(2) = 1. The one-sided limits are
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Since the one-sided limits disagree, liné f(x) does not exist, and therefore x = 2 is a
xr—r
non-removable discontinuity.

6] (¢) Now we consider any values of x that would make any part of the definition of f(x)
undefined.

From the first definition, this occurs when
P +3r—4=(x+4)(z—1)=0,

so r = —4 or x = 1. However, this definition only applies when z < 0, so we reject
x = 1. When z = —4, direct substitution produces a g indeterminate form, so we need
to take the limit:
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Since the limit exists, = —4 is a removable discontinuity:.

The second definition is a polynomial, which is always defined.



From the third definition, the denominator is zero when x? — 10z + 25 = (z — 5)? = 0,
so x = 5. Direct substitution results in a % form, so again we must take the limit:
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lim f(x) = lim o ret 10 = lim (z—5)(z—2) — lim < ,
x—5 =512 — 102 + 25 -5 (x —5)? =51 —H

which results in a % form. Thus the limit does not exist, and =5 is a non-removable
discontinuity.



