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[6] 1. Since this is a quasirational function, we must consider both limits at infinity. Note that
the smallest power of x in the denominator is effectively x (since we treat the x2 inside the
square root as having half its actual power). First, then,
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Next,
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Hence this function has two horizontal asymptotes: y = −2
3

and y = 2.



[4] 2. First observe that f(−2) = 9− 2k. This will be defined for all k.

Next,
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Thus the limit also exists for all k.

Finally, we need lim
x→−2

f(x) = f(−2), so we set

4k2 + 7k = 9− 2k

4k2 + 9k − 9 = 0

(4k − 3)(k + 3) = 0

so k = 3
4

or k = −3 .

3.[2] (a) We have f(0) = −1. The one-sided limits are

lim
x→0−

f(x) = lim
x→0−

x2 + 5x + 4

x2 + 3x− 4
= −1 and lim

x→0+
f(x) = lim

x→0+
(x− 1) = −1.

Since the one-sided limits are equal, lim
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f(x) = −1 = f(0), and hence the function is

continuous at x = 0.

[2] (b) We have f(2) = 1. The one-sided limits are
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Since the one-sided limits disagree, lim
x→2

f(x) does not exist, and therefore x = 2 is a

non-removable discontinuity.

[6] (c) Now we consider any values of x that would make any part of the definition of f(x)
undefined.

From the first definition, this occurs when

x2 + 3x− 4 = (x + 4)(x− 1) = 0,

so x = −4 or x = 1. However, this definition only applies when x ≤ 0, so we reject
x = 1. When x = −4, direct substitution produces a 0

0
indeterminate form, so we need

to take the limit:
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Since the limit exists, x = −4 is a removable discontinuity.

The second definition is a polynomial, which is always defined.



From the third definition, the denominator is zero when x2 − 10x + 25 = (x − 5)2 = 0,
so x = 5. Direct substitution results in a 0

0
form, so again we must take the limit:
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which results in a 3
0

form. Thus the limit does not exist, and x = 5 is a non-removable
discontinuity.


