MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 3.5

Math 1000 Worksheet
FALL 2022

SOLUTIONS

1. (a) We want an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is $-\frac{\sqrt{2}}{2}$, so

$$
\arcsin \left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4}
$$

(b) We want an angle between 0 and π whose cosine is $-\frac{\sqrt{2}}{2}$, so

$$
\arccos \left(-\frac{\sqrt{2}}{2}\right)=\frac{3 \pi}{4}
$$

(c) First note that

$$
\operatorname{arcsec}\left(\frac{2 \sqrt{3}}{3}\right)=\arccos \left(\frac{3}{2 \sqrt{3}}\right)=\arccos \left(\frac{\sqrt{3}}{2}\right)
$$

so we want an angle between 0 and π whose cosine is $\frac{\sqrt{3}}{2}$. Hence

$$
\operatorname{arcsec}(\sqrt{2})=\frac{\pi}{6}
$$

(d) Note that $\frac{9 \pi}{4}>\frac{\pi}{2}$ so we cannot simply use the cancellation equation. But $\tan \left(\frac{9 \pi}{4}\right)=$ $\tan \left(\frac{\pi}{4}\right)=1$ and so

$$
\arctan \left(\tan \left(\frac{9 \pi}{4}\right)\right)=\frac{\pi}{4}
$$

(e) Let $\theta=\arccos \left(\frac{5}{13}\right)$. Then we can construct a right triangle with an interior angle θ, adjacent sidelength 5 and hypotenuse of length 13. By the Pythagorean theorem, the remaining side has length

$$
\sqrt{13^{2}-5^{2}}=\sqrt{144}=12 \quad \Longrightarrow \quad \sin \left(\arccos \left(\frac{5}{13}\right)\right)=\sin (\theta)=\frac{12}{13} .
$$

(f) Let $\theta=\arctan (2)$. We construct a right triangle with interior angle θ, opposite sidelength 2 and adjacent sidelength 1 . Then the length of the hypotenuse is

$$
\sqrt{1^{2}+2^{2}}=\sqrt{5} \quad \Longrightarrow \quad \cos (\arctan (2))=\cos (\theta)=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}
$$

2. (a) $y^{\prime}=\frac{1}{\ln (x) \sqrt{[\ln (x)]^{2}-1}} \cdot[\ln (x)]^{\prime}=\frac{1}{x \ln (x) \sqrt{[\ln (x)]^{2}-1}}$
(b) $y^{\prime}=\left(x^{2}\right)^{\prime} \arctan (3 x)+[\arctan (3 x)]^{\prime} x^{2}$

$$
=2 x \arctan (3 x)+\frac{1}{1+9 x^{2}} \cdot(3 x)^{\prime} \cdot x^{2}=2 x \arctan (3 x)+\frac{3 x^{2}}{1+9 x^{2}}
$$

(c) $y^{\prime}=\frac{1}{\sqrt{1-\tan ^{2}\left(t^{2}\right)}} \cdot\left[\tan \left(t^{2}\right)\right]^{\prime}$

$$
=\frac{1}{\sqrt{1-\tan ^{2}\left(t^{2}\right)}} \cdot \sec ^{2}\left(t^{2}\right) \cdot\left(t^{2}\right)^{\prime}=\frac{2 t \sec ^{2}\left(t^{2}\right)}{\sqrt{1-\tan ^{2}\left(t^{2}\right)}}
$$

(d) First we have

$$
\begin{aligned}
y^{\prime} & =\sec ^{2}\left(\arcsin \left(t^{2}\right)\right) \cdot\left[\arcsin \left(t^{2}\right)\right]^{\prime}=\sec ^{2}\left(\arcsin \left(t^{2}\right)\right) \cdot \frac{1}{\sqrt{1-\left(t^{2}\right)^{2}}} \cdot\left(t^{2}\right)^{\prime} \\
& =\frac{2 t \sec ^{2}\left(\arcsin \left(t^{2}\right)\right)}{\sqrt{1-t^{4}}} .
\end{aligned}
$$

But note that if $\theta=\arcsin \left(t^{2}\right)$ then we can construct a right triangle with t^{2} as the length of the side opposite θ, and 1 as the length of the hypotenuse. The length of the adjacent side must be

$$
\sqrt{1^{2}-\left(t^{2}\right)^{2}}=\sqrt{1-t^{4}}
$$

so

$$
\sec \left(\arcsin \left(t^{2}\right)\right)=\sec (\theta)=\frac{1}{\sqrt{1-t^{4}}} \quad \Longrightarrow \quad \sec ^{2}\left(\arcsin \left(t^{2}\right)\right)=\frac{1}{1-t^{4}}
$$

Thus

$$
y^{\prime}=\frac{2 t \cdot \frac{1}{1-t^{4}}}{\sqrt{1-t^{4}}}=\frac{2 t}{\left(1-t^{4}\right)^{\frac{3}{2}}} .
$$

3. First, observe that

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{x-2}{2}\right)^{2}}} \cdot \frac{1}{2}-\frac{2}{\sqrt{1-\frac{x}{4}}} \cdot \frac{1}{4 \sqrt{x}}=\frac{1}{2 \sqrt{x-\frac{1}{4} x^{2}}}-\frac{1}{2 \sqrt{x-\frac{1}{4} x^{2}}}=0 .
$$

Thus the tangent line must be horizontal. When $x=2$,

$$
y=f(2)=\arcsin (0)-2 \arcsin \left(\frac{\sqrt{2}}{2}\right)=0-2\left(\frac{\pi}{4}\right)=-\frac{\pi}{2} .
$$

Hence the equation of the tangent line is $y=-\frac{\pi}{2}$.
4. Differentiating implicitly, we have

$$
\begin{aligned}
\frac{d}{d x}\left[\sqrt{1-x^{2} y^{2}}\right] & =\frac{d}{d x}[\arccos (x y)] \\
\frac{1}{2 \sqrt{1-x^{2} y^{2}}} \cdot \frac{d}{d x}\left[1-x^{2} y^{2}\right] & =-\frac{1}{\sqrt{1-(x y)^{2}}} \cdot \frac{d}{d x}[x y] \\
\frac{1}{2 \sqrt{1-x^{2} y^{2}}}\left(-2 x y^{2}-2 x^{2} y \frac{d y}{d x}\right) & =-\frac{1}{\sqrt{1-x^{2} y^{2}}}\left(y+x \frac{d y}{d x}\right) \\
\left(-x y^{2}-x^{2} y \frac{d y}{d x}\right) & =-y-x \frac{d y}{d x} \\
\frac{d y}{d x}\left(-x^{2} y+x\right) & =x y^{2}-y \\
\frac{d y}{d x} & =\frac{x y^{2}-y}{-x^{2} y+x}=\frac{y(x y-1)}{-x(x y-1)}=-\frac{y}{x}
\end{aligned}
$$

5. Let $y=\arccos (x)$ so $\cos (y)=x$. Differentiating implicitly, we have

$$
\begin{aligned}
\frac{d}{d x}[\cos (y)] & =\frac{d}{d x}[x] \\
-\sin (y) \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =-\frac{1}{\sin (y)} .
\end{aligned}
$$

Since $\sin ^{2}(y)+\cos ^{2}(y)=1$, we know that $\sin (y)= \pm \sqrt{1-\cos ^{2}(y)}$. However, for $0 \leq y \leq \pi$, $\sin (y) \geq 0$, and so $\sin (y)=\sqrt{1-\cos ^{2}(y)}=\sqrt{1-x^{2}}$. Hence

$$
\frac{d y}{d x}=\frac{d}{d x}[\arccos (x)]=-\frac{1}{\sqrt{1-x^{2}}}
$$

