MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 2
MATHEMATICS 1000-003
FALL 2022

SOLUTIONS

[3] 1. (a) A function may have no more than two horizontal asymptotes. The horizontal asymptotes describe the behaviour of the function as $\rightarrow \pm \infty$, and thus the graph of $f(x)$ may cross a horizontal asymptote any number of times for intermediate values of x. It's a vertical asymptote, not a horizontal asymptote, that describes the manner in which $f(x)$ becomes unboundedly large as x approaches a real number p. Hence the correct choice is:a horizontal asymptote describes the behaviour of $f(x)$ as x becomes unboundedly large (positively or negatively)
(c) We proved that differentiability implies continuity, so the following is impossibe:
$f(x)$ is differentiable at $x=p$ but not continuous at $x=p$
(d) Graphically, a function is non-differentiable at a point if it has a vertical tangent line at a point (because this implies that the one-sided limits of the definition of the derivative are infinite), an abrupt change or "sharp corner" at a point (because this implies that the one-sided limits of the definition of the derivative are not equal), or if it has a vertical tangent asymptote at a point (because this implies that the function is not continuous there). Hence the correct choice is:
$\square f(x)$ has a horizontal tangent line at $x=p$
[3]
(e) The slope of a tangent line, the velocity of an object, and the infection rate of a virus are all examples of rates of change. Furthermore, the derivative is the mathematical equivalent of a rate of change. Hence the correct choice is:all of the above are examples of, or are equivalent to, a rate of change
2. Observe that $f(x)$ is a rational function, so we need only consider one of the limits at infinity.

Then

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{2 x^{3}(6 x-1)}{\left(3 x^{2}+4\right)^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{12 x^{4}-2 x^{3}}{9 x^{4}+24 x^{2}+16} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}} \\
& =\lim _{x \rightarrow \infty} \frac{12-\frac{2}{x}}{9+\frac{24}{x^{2}}+\frac{16}{x^{4}}} \\
& =\frac{12-0}{9+0+0} \\
& =\frac{12}{9} \\
& =\frac{4}{3}
\end{aligned}
$$

Hence the only horizontal asymptote is the line $y=\frac{4}{3}$.
[8] 3. First we observe that $f(2)=3 k^{2}-4$, which is defined for all k. Next we need to determine if $\lim _{x \rightarrow 2} f(x)$ exists. Since the definition of $f(x)$ changes at $x=2$, we consider the one-sided limits. From the left we have

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}+5 k x\right)=4+10 k,
$$

and from the right we have

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(k^{2} x+4 x+4\right)=2 k^{2}+8+4=2 k^{2}+12 .
$$

We set

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{+}} f(x) \\
4+10 k & =2 k^{2}+12 \\
2 k^{2}-10 k+8 & =0 \\
k^{2}-5 k+4 & =0 \\
(k-4)(k-1) & =0
\end{aligned}
$$

Thus $k=4$ or $k=1$.
For $k=4$, we have $f(2)=44$ and $\lim _{x \rightarrow 2} f(x)=44$, so $f(x)$ is continuous.
For $k=1$, we have $f(2)=-1$ and $\lim _{x \rightarrow 2} f(x)=14$, so $f(x)$ is not continuous.
Hence the only value of k for which $f(x)$ is continuous at $x=2$ is $k=4$.
[8] 4. (a) We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h}{2(x+h)+5}-\frac{x}{2 x+5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{(x+h)(2 x+5)-x(2 x+2 h+5)}{(2 x+5)(2 x+2 h+5)} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+2 x h+5 x+5 h-2 x^{2}-2 x h-5 x}{h(2 x+5)(2 x+2 h+5)} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h(2 x+5)(2 x+2 h+5)} \\
& =\lim _{h \rightarrow 0} \frac{5}{(2 x+5)(2 x+2 h+5)} \\
& =\frac{5}{(2 x+5)(2 x+5)} \\
& =\frac{5}{(2 x+5)^{2}} .
\end{aligned}
$$

[4] (b) From part (a), $m=f^{\prime}(-3)=5$. Furthermore, $y=f(-3)=3$. Thus the equation of the tangent line is

$$
y-3=5(x+3) \quad \Longrightarrow \quad y=5 x+18
$$

