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SOLUTIONS

[4] 1. (a) This is a quasirational function for which direct substitution yields a % indeterminate

form, so we use the Rationalisation Method. There is a radical in both the numerator
and the denominator, so let’s first try rationalising the numerator:
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Now we’ll rationalise the denominator:
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3] (b) Direct substitution yields another type of indeterminate form (oo — 00) so we first need
to rewrite the given function in a way that will allow us to use the techniques we’ve
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learned. We have
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Now we’ve obtained a rational function (and note that direct substitution produces a %

indeterminate form) so we can use the Cancellation Method:
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(¢) Again, direct substitution results in a g indeterminate form. But recall that, for any 6,
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This means that we can rewrite the given limit as
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Now we can try using the special trigonometric limit
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As z — 0, 3x — 0 so this limit has the same form as the special sine limit with ¢t = 3.
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2. Since this is a piecewise function whose behaviour changes at x = 3, we must check the

one-sided limits:
lim f(x) = lim (2* — k*) = 9 — k?
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and
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If the limit exists, then these one-sided limits must be equal, so we set
9—k*=3k+5
K +3k—4=0
(k+4)(k—-1)=0,
and hence k=—-4 or k=1.

(Note that the third part of the definition of f(z) did not affect our workings because it
applies only for x < 0, which is far away from x = 3.)
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3. To find the vertical asymptotes, we first set the denominator equal to zero and solve for x:

6—z—22=0
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so the only possible vertical asymptotes are at x = 2 and x = —3.

At x = 2, the numerator is 3(2%) +13(2) + 12 = 50. Since this is non-zero, it guarantees that
x = 2 is a vertical asymptote.

At 2 = —3, the numerator is 3(—3)? + 13(—3) + 12 = 0. Thus we have a J indeterminate
form at x = —3. This means that we must take the limit to see if a vertical asymptote is
located there:
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Since the limit exists, x = —3 is not a vertical asymptote (it must just be a hole in the

graph).
Finally, observe that
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since the numerator is positive and the denominator is small and positive as * — 27.

Similarly,
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since the numerator is positive and the denominator is small and negative as z — 27.



