MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[4] 1. (a) Direct substitution results in a $\frac{0}{0}$ indeterminate form, so we use the rationalisation method:

$$
\begin{aligned}
\lim _{h \rightarrow 3} \frac{6+h-h^{2}}{\sqrt{5 h-6}-\sqrt{h+6}} & =\lim _{h \rightarrow 3} \frac{6+h-h^{2}}{\sqrt{5 h-6}-\sqrt{h+6}} \cdot \frac{\sqrt{5 h-6}+\sqrt{h+6}}{\sqrt{5 h-6}+\sqrt{h+6}} \\
& =\lim _{h \rightarrow 3} \frac{\left(6+h-h^{2}\right)(\sqrt{5 h-6}+\sqrt{h+6})}{(5 h-6)-(h+6)} \\
& =\lim _{h \rightarrow 3} \frac{\left(6+h-h^{2}\right)(\sqrt{5 h-6}+\sqrt{h+6})}{4 h-12} \\
& =\lim _{h \rightarrow 3} \frac{-(h-3)(h+2)(\sqrt{5 h-6}+\sqrt{h+6})}{4(h-3)} \\
& =\lim _{h \rightarrow 3} \frac{-(h+2)(\sqrt{5 h-6}+\sqrt{h+6})}{4} \\
& =\frac{-5(3+3)}{4} \\
& =-\frac{15}{2} .
\end{aligned}
$$

[4] (b) We can write

$$
\begin{aligned}
7\left(x^{2}+3 x+2\right)^{-1}-(x+8)(x+1)^{-1} & =\frac{7}{x^{2}+3 x+2}-\frac{x+8}{x+1} \\
& =\frac{7}{(x+2)(x+1)}-\frac{x+8}{x+1} \\
& =\frac{7}{(x+2)(x+1)}-\frac{(x+8)(x+2)}{(x+2)(x+1)} \\
& =\frac{7-\left(x^{2}+10 x+16\right)}{(x+2)(x+1)} \\
& =\frac{-x^{2}-10 x-9}{(x+2)(x+1)}
\end{aligned}
$$

Now direct substitution results in a $\frac{0}{0}$ indeterminate form, so we can use the cancellation method:

$$
\begin{aligned}
\lim _{x \rightarrow-1}\left[7\left(x^{2}+3 x+2\right)^{-1}-(x+8)(x+1)^{-1}\right] & =\lim _{x \rightarrow-1} \frac{-x^{2}-10 x-9}{(x+2)(x+1)} \\
& =\lim _{x \rightarrow-1}-\frac{(x+9)(x+1)}{(x+2)(x+1)} \\
& =\lim _{x \rightarrow-1}-\frac{x+9}{x+2} \\
& =-8 .
\end{aligned}
$$

[4] (c) First observe that

$$
\frac{4}{t \cot (7 t)}=\frac{4}{t \cdot \frac{\cos (t)}{\sin (t)}}=\frac{4 \sin (7 t)}{t \cos (t)}
$$

Now we can use the special sine limit. Because the argument of the sine function is $7 t$, and there is already a factor of t in the denominator, we need to multiply the numerator and the denominator by 7 , to get

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{4}{t \cot (7 t)} & =\lim _{t \rightarrow 0} \frac{4 \sin (7 t)}{t \cos (7 t)} \cdot \frac{7}{7} \\
& =\lim _{t \rightarrow 0} \frac{\sin (7 t)}{7 t} \cdot \frac{28}{\cos (7 t)} \\
& =\lim _{t \rightarrow 0} \frac{\sin (7 t)}{7 t} \cdot \lim _{t \rightarrow 0} \frac{28}{\cos (7 t)}
\end{aligned}
$$

As $t \rightarrow 0$, it is also true that $7 t \rightarrow 0$ so the first limit is the special sine limit, and the other limit can be evaluated by direct substitution:

$$
\lim _{t \rightarrow 0} \frac{4}{t \cot (7 t)}=1 \cdot \lim _{t \rightarrow 0} \frac{28}{\cos (7 t)}=1 \cdot \frac{28}{\cos (0)}=28
$$

[8] 2. First we set

$$
\begin{aligned}
x^{5}-4 x^{3} & =0 \\
x^{3}\left(x^{2}-4\right) & =0 \\
x^{3}(x-2)(x+2) & =0,
\end{aligned}
$$

so the possible vertical asymptotes are $x=0, x=2$ and $x=-2$.
At $x=0$, the numerator is 0 as well, so we need to check the limit:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x(x+2)}{x^{3}(x-2)(x+2)}=\lim _{x \rightarrow 0} \frac{1}{x^{2}(x-2)} .
$$

Now direct substitution results in a $\frac{1}{0}$ form, so $x=0$ is a vertical asymptote.
At $x=2$, the numerator is 8 , so $x=2$ is also a vertical asymptote.
At $x=-2$, the numerator is 0 , so again we need to determine the limit:

$$
\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{x(x+2)}{x^{3}(x-2)(x+2)}=\lim _{x \rightarrow-2} \frac{1}{x^{2}(x-2)}=\frac{1}{4(-4)}=-\frac{1}{16} .
$$

Since the limit exists, $x=-2$ is not a vertical asymptote.
Now consider the expression $\frac{1}{x^{2}(x-2)}$. As $x \rightarrow 0^{-}$, the denominator becomes a small negative number, so

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\infty
$$

The same is true as $x \rightarrow 0^{+}$, so

$$
\lim _{x \rightarrow 0^{+}} f(x)=-\infty .
$$

As $x \rightarrow 2^{-}$, the denominator is also a small negative number, so again

$$
\lim _{x \rightarrow 2^{-}} f(x)=-\infty
$$

However, as $x \rightarrow 2^{+}$, the denominator is a small positive number, so

$$
\lim _{x \rightarrow 2^{+}} f(x)=\infty
$$

