MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 1
MATHEMATICS 1000-003
FALL 2022

SOLUTIONS

[12] 1. (a) $f(2)$ is undefined
(b) $\lim _{x \rightarrow 2^{-}} f(x)=\infty$
(c) $\lim _{x \rightarrow 2^{+}} f(x)=\infty$
(d) $\lim _{x \rightarrow 2} f(x)=\infty$ (and therefore the limit does not exist)
(e) $f(0)=2$
(f) $\lim _{x \rightarrow 0^{-}} f(x)=2$
(g) $\lim _{x \rightarrow 0^{+}} f(x)=-3$
(h) $\lim _{x \rightarrow 0} f(x)$ does not exist (because the one-sided limits do not agree)
(i) $f(-2)=-4$
(j) $\lim _{x \rightarrow-2^{-}} f(x)=0$
(k) $\lim _{x \rightarrow-2^{+}} f(x)=0$
(1) $\lim _{x \rightarrow-2} f(x)=0$
[6] 2. (a) Since $f(x)$ changes its definition at $x=-3$, we must consider the one-sided limits. From the left,

$$
\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}} \frac{6 x+18}{9-x^{2}}
$$

Direct substitution produces a $\frac{0}{0}$ indeterminate form, so we apply the Cancellation Method:

$$
\begin{aligned}
\lim _{x \rightarrow-3^{-}} f(x) & =\lim _{x \rightarrow-3^{-}} \frac{6(x+3)}{-(x-3)(x+3)} \\
& =\lim _{x \rightarrow-3^{-}} \frac{6}{-(x-3)} \\
& =\frac{6}{-(-6)} \\
& =1
\end{aligned}
$$

From the right, direct substitution immediately provides

$$
\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}} \frac{3-5 x}{9+x^{2}}=\frac{3-(-15)}{9+9}=1
$$

Since the one-sided limits are equal, we can conclude that

$$
\lim _{x \rightarrow-3} f(x)=1
$$

[5] (b) Direct substitution yields a $\frac{0}{0}$ indeterminate form, so we use the Rationalisation Method:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{3 x-\sqrt{7 x^{2}+8}} & =\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{3 x-\sqrt{7 x^{2}+8}} \cdot \frac{3 x+\sqrt{7 x^{2}+8}}{3 x+\sqrt{7 x^{2}+8}} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}-2 x\right)\left(3 x+\sqrt{7 x^{2}+8}\right)}{9 x^{2}-7 x^{2}-8} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}-2 x\right)\left(3 x+\sqrt{7 x^{2}+8}\right)}{2 x^{2}-8} \\
& =\lim _{x \rightarrow 2} \frac{x(x-2)\left(3 x+\sqrt{7 x^{2}+8}\right)}{2(x-2)(x+2)} \\
& =\lim _{x \rightarrow 2} \frac{x\left(3 x+\sqrt{7 x^{2}+8}\right)}{2(x+2)} \\
& =\frac{2(6+\sqrt{36})}{2 \cdot 4} \\
& =3 .
\end{aligned}
$$

[5] (c) Direct substitution yields a $\frac{0}{0}$ indeterminate form, but we can rewrite the given limit as

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin ^{2}(3 x)}{x \sin (4 x)} & =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x} \cdot \lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (4 x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x} \cdot \frac{3}{3} \cdot \lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (4 x)} \\
& =3 \lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \cdot \lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (4 x)} \\
& =3 \cdot 1 \cdot \lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (4 x)} \cdot \frac{3 x}{3 x} \\
& =3 \cdot 3 \lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \cdot \lim _{x \rightarrow 0} \frac{x}{\sin (4 x)} \\
& =9 \cdot 1 \cdot \lim _{x \rightarrow 0} \frac{x}{\sin (4 x)} \cdot \frac{4}{4} \\
& =9 \cdot \frac{1}{4} \lim _{x \rightarrow 0} \frac{4 x}{\sin (4 x)} \\
& =\frac{9}{4} \cdot 1 \\
& =\frac{9}{4} .
\end{aligned}
$$

3. We set

$$
\begin{array}{r}
2 x^{2}-5 x+3=0 \\
(2 x-3)(x-1)=0
\end{array}
$$

so the possible vertical asymptotes are $x=\frac{3}{2}$ and $x=1$.
First we observe that $f\left(\frac{3}{2}\right)=\frac{0}{0}$ so we must find out whether the limit exists in order to determine if $x=\frac{3}{2}$ is a vertical asymptote. By the Cancellation Method,

$$
\begin{aligned}
\lim _{x \rightarrow \frac{3}{2}} \frac{3-2 x}{2 x^{2}-5 x+3} & =\lim _{x \rightarrow \frac{3}{2}} \frac{-(2 x-3)}{(2 x-3)(x-1)} \\
& =\lim _{x \rightarrow \frac{3}{2}} \frac{-1}{x-1} \\
& =\frac{-1}{\frac{1}{2}} \\
& =-2 .
\end{aligned}
$$

Since the limit exists, $x=\frac{3}{2}$ is not a vertical asymptote.
Next, $f(1)=\frac{1}{0}$, so $x=1$ is a vertical asymptote. Furthermore, we can observe that $x-1$ is a small negative number when $x \rightarrow 1^{-}$so

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{-1}{x-1}=\infty
$$

Likewise, $x-1$ is a small positive number when $x \rightarrow 1^{+}$so

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{-1}{x-1}=-\infty
$$

[4] 4. (a) This statement is false. We can write

$$
f(x)=\frac{x^{2}-9}{x-3}=\frac{(x-3)(x+3)}{x-3}=x+3=g(x)
$$

only when $x-3 \neq 0$, that is, when $x \neq 3$. In fact, $f(3)$ is undefined (because it results in division by zero) while $g(3)=6$. Thus these functions are not equal.
(b) This statement is true. Because $f(x)$ and $g(x)$ differ only at $x=3$, and the limit as $x \rightarrow 3$ is not affected by the behaviour of the functions at $x=3$, their limits must be equal. Indeed,

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3}(x+3)=6
$$

by the Cancellation Method, while

$$
\lim _{x \rightarrow 3} g(x)=\lim _{x \rightarrow 3}(x+3)=6
$$

by direct substitution.

