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12 1 (a) £(0) =2
(b) lirél_ f(z) = -2
(©) lm f(a) =2
(

d) liH(l) f(z) does not exist (because the one-sided limits are not equal)
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(€) f(=3) =4
(f) lim f(z) =0
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r——31

lim f(z) =0

r——3

)

) £(2)is undefined
) lim f(z) = =o
)

)
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(9 Jim f(r) =

(1 lir% f(z) = —oo (and therefore does not exist)
z—

[6] 2. (a) Direct substitution yields a difference of & but, since the resulting limits would not
exist, we cannot rewrite this as the difference of two limits. Instead, we rewrite the given
function as a single rational function, and then use the Cancellation Method:
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(b) Direct substitution results in a § indeterminate form. Since this is a quasirational func-
tion, we use the Rationalisation Method:
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C galn, we obtaln a 7 1ndeterminate 1orm Dy direct substitution. ut reca € specla
Agai btain a 3 indeterminate form by direct substitution. But recall th ial
limit
sin(t
lim (®)
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We can rewrite the given limit as
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[4] 3. Because f(z) is a rational function, we need evaluate only one of the limits at infinity:
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Hence the only horizontal asymptote is the line y = —2.

B 4 (a)

We have
lim f(z)= lim (ke +7)=3k+7

T—3~ Tz—3~

and
lim f(r) = lim (z + k) = 3 + k°.

x—3F x—3F

In order for the limit to exist, we require

lim f(z)= lim f(x)

r—3— r—3+
3k+7=3+k
k> —3k—4=0

(k—4)(k+1)=0

so k=4 or k=-1.
For k = 4, observe that

f(3)=2v4+5=6 and lin%f(:c) = 19.
T—r
For k = —1, we see that

f3)=2v-1+5=4 and lil)r%))f(x):4.

Since f(3) = 111% f(z) when k= —1 we may conclude that f(z) is continuous at x =3
T—>

for this value of k.

Since f(3) # lin}% f(z) but liné f(z) exists when k=4 we may conclude that f(z) has
Tr— xT—r

a removable discontinuity at x = 3 for this value of k.



