MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) $f(-1)=1$
(b) $\lim _{x \rightarrow-1^{-}} f(x)=-3$
(c) $\lim _{x \rightarrow-1^{+}} f(x)=1$
(d) $\lim _{x \rightarrow-1} f(x)$ does not exist (because the one-sided limits do not agree)
(e) $f(2)$ is undefined
(f) $\lim _{x \rightarrow 2^{-}} f(x)=-2$
(g) $\lim _{x \rightarrow 2^{+}} f(x)=-2$
(h) $\lim _{x \rightarrow 2} f(x)=-2$
(i) $f(3)$ is undefined
(j) $\lim _{x \rightarrow 3^{-}} f(x)=\infty$
(k) $\lim _{x \rightarrow 3^{+}} f(x)=\infty$
(l) $\lim _{x \rightarrow 3} f(x)=\infty$
[4] 2. (a) First we consider values to the left of $x=-4$:

x	-5	-4.5	-4.1	-4.01	-4.001
$f(x)$	-0.6875	-0.8163	-0.9573	-0.9956	-0.9996

and then values to the right of $x=-4$:

x	-3	-3.5	-3.9	-3.99	-3.999
$f(x)$	-1.75	-1.280	-1.0464	-1.0045	-1.0004

We can deduce that

$$
\lim _{x \rightarrow-4^{-}} f(x)=-1 \quad \text { and } \quad \lim _{x \rightarrow-4^{+}} f(x)=-1,
$$

and since these agree, we can conclude that

$$
\lim _{x \rightarrow-4} f(x)=-1
$$

[4] (b) First we consider values to the left of $x=-1$:

x	-2	-1.5	-1.1	-1.01	-1.001
$f(x)$	-5	-16	-320	-30200	-3002000

and then values to the right of $x=-1$:

x	0	-0.5	-0.9	-0.99	-0.999
$f(x)$	-1	-8	-280	-29800	-2998000

We can deduce that

$$
\lim _{x \rightarrow-1^{-}} f(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{+}} f(x)=-\infty
$$

Since the limits are infinite, $\lim _{x \rightarrow-1} f(x)$ does not exist, but we can write that

$$
\lim _{x \rightarrow-1} f(x)=-\infty
$$

