MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 1.6

Math 1000 Worksheet
FALL 2022

SOLUTIONS

1. (a) First, we observe that

$$
f(-2)=\frac{(-2)^{2}+4}{2(-2)^{2}+4}=\frac{8}{12}=\frac{2}{3}
$$

so $f(-2)$ is defined. Next, we evaluate

$$
\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} \frac{x^{2}+4}{2 x^{2}+4}=\frac{2}{3}
$$

and

$$
\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}} \frac{x^{2}-4}{2 x+4}=\lim _{x \rightarrow-2^{+}} \frac{(x-2)(x+2)}{2(x+2)}=\lim _{x \rightarrow-2^{+}} \frac{x-2}{2}=-2 .
$$

Since the one-sided limits are not equal, $\lim _{x \rightarrow-2} f(x)$ does not exist. Hence $f(x)$ is not continuous at $x=-2$, and it is a non-removable discontinuity.
(b) First, we observe that

$$
f(1)=\frac{1^{2}-4}{2 \cdot 1+4}=\frac{-3}{6}=-\frac{1}{2} .
$$

Next, we evaluate

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x^{2}-4}{2 x+4}=-\frac{1}{2}
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-4}{x^{2}-9 x+14}=\frac{1^{2}-4}{1^{2}-9 \cdot 1+14}=-\frac{3}{6}=-\frac{1}{2}
$$

This time, the one-sided limits are equal, so

$$
\lim _{x \rightarrow 1} f(x)=-1=f(1)
$$

Hence all three parts of the definition of continuity at a point are satisfied, and so $f(x)$ is continuous at $x=1$.
(c) Since direct substitution of $x=2$ produces a $\frac{0}{0}$ form, we know that $f(2)$ is undefined, but we must apply the Cancellation Method to determine whether the limit exists:

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-9 x+14}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x-7)}=\lim _{x \rightarrow 2} \frac{x+2}{x-7}=-\frac{4}{5}
$$

Since the limit exists, the discontinuity is removable.
2. We have $f(1)=2 k+3$, which is defined for all k. By cancellation,

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}+(k-1) x-k}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+k)}{x-1}=\lim _{x \rightarrow 1}(x+k)=1+k
$$

so the limit exists for all k. In order for $f(x)$ to satisfy the requirement that $\lim _{x \rightarrow 1} f(x)=f(1)$, we set

$$
1+k=2 k+3 \quad \Longrightarrow \quad k=-2
$$

so $f(x)$ is continuous at $x=1$ only if $k=-2$.
3. First observe that $f(2)=2 k^{2}-5$, which is defined for all k. Since $f(x)$ is a piecewise function whose definition changes at $x=2$, we investigate the one-sided limits:

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{1}{x-4}=-\frac{1}{2} \quad \text { and } \quad \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(k^{2} x-5\right)=2 k^{2}-5
$$

For the one-sided limits to be equal, we set $2 k^{2}-5=-\frac{1}{2}$ and hence $k= \pm \frac{3}{2}$. Note that for either value of k,

$$
f(2)=\lim _{x \rightarrow 2} f(x)=-\frac{1}{2},
$$

so $f(x)$ is continuous at $x=2$ for $k=\frac{3}{2}$ and $k=-\frac{3}{2}$.
4. First note that $f(0)=k+\frac{5}{6}$, which is defined for any k. Next,

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{\sqrt{k x^{2}+1}-1}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\sqrt{k x^{2}+1}-1}{3 x^{2}} \cdot \frac{\sqrt{k x^{2}+1}+1}{\sqrt{k x^{2}+1}+1} \\
& =\lim _{x \rightarrow 0} \frac{k x^{2}}{3 x^{2}\left(\sqrt{k x^{2}+1}+1\right)}=\lim _{x \rightarrow 0} \frac{k}{3\left(\sqrt{k x^{2}+1}+1\right)}=\frac{k}{6}
\end{aligned}
$$

so the limit exists for any k. Finally, we need to determine when $f(0)=\lim _{x \rightarrow 0} f(x)$. We set

$$
k+\frac{5}{6}=\frac{k}{6} \quad \Longrightarrow \quad \frac{5 k}{6}=-\frac{5}{6} \quad \Longrightarrow \quad k=-1
$$

so the only value of k which makes $f(x)$ continuous at $x=0$ is $k=-1$.

