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SOLUTIONS

1. (a) First, we observe that
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Since the one-sided limits are not equal, lim2 f(z) does not exist. Hence f(z) is not
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continuous at x = —2, and it is a non-removable discontinuity.
(b) First, we observe that
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Next, we evaluate
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This time, the one-sided limits are equal, so

lim f(z) = —1 = f(1).
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Hence all three parts of the definition of continuity at a point are satisfied, and so f(x)
is continuous at x = 1.

(¢) Since direct substitution of z = 2 produces a 3 form, we know that f(2) is undefined,
but we must apply the Cancellation Method to determine whether the limit exists:
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Since the limit exists, the discontinuity is removable.



2. We have f(1) = 2k + 3, which is defined for all k. By cancellation,

lim f(z) = lim ot Ve =k e Dtk

x—1 z—1 x—1 z—1 x—1 :3161_%(13—0—]{7):14—/@

so the limit exists for all k. In order for f(z) to satisfy the requirement that lirr% flz) = f(1),
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we set
1+k=2k+3 = k=-2,

so f(x) is continuous at x = 1 only if k= —2.

3. First observe that f(2) = 2k*—5, which is defined for all k. Since f(x) is a piecewise function
whose definition changes at © = 2, we investigate the one-sided limits:
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lim f(x)= lim 1= 35 and lim f(x) = lim (k*z —5) = 2k* — 5.
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For the one-sided limits to be equal, we set 2k? — 5 = —% and hence k = j:%. Note that for
either value of k,

£(2) = lim f(z) = —2,
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so f(x) is continuous at = 2 for k=3 and k= —3.
4. First note that f(0) =k + 2, which is defined for any k. Next,
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so the limit exists for any k. Finally, we need to determine when f(0) = 1ir% f(z). We set
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so the only value of k£ which makes f(z) continuous at z =01is k= —1.



