MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) $f(0)=3$
(b) $\lim _{x \rightarrow 0^{-}} f(x)=0$
(c) $\lim _{x \rightarrow 0^{+}} f(x)=3$
(d) $\lim _{x \rightarrow 0} f(x)$ does not exist because the one-sided limits are not equal
(e) $f(3)=-1$
(f) $\lim _{x \rightarrow 3^{-}} f(x)=3$
(g) $\lim _{x \rightarrow 3^{+}} f(x)=3$
(h) $\lim _{x \rightarrow 3} f(x)=3$
(i) $f(4)=0$
(j) $\lim _{x \rightarrow 4} f(x)=0$
(k) $f(-2)$ is undefined because $x=-2$ is a vertical asymptote
($\ell) \lim _{x \rightarrow-2^{-}} f(x)=-\infty$
(m) $\lim _{x \rightarrow-2^{+}} f(x)=\infty$
(n) $\lim _{x \rightarrow-2} f(x)$ does not exist because the one-sided limits are not equal
2. Note that $|9 x|=9 x$ for $x>0$ and $|9 x|=-9 x$ for $x<0$. Thus, for $x>0$,

$$
g(x)=\frac{7 x-9 x}{4 x}=\frac{-2 x}{4 x}=-\frac{1}{2},
$$

while for $x<0$,

$$
g(x)=\frac{7 x-(-9 x)}{4 x}=\frac{16 x}{4 x}=4
$$

Finally, for $x=0$, we have division by zero, so $g(0)$ is undefined. Hence we can write

$$
g(x)=\left\{\begin{array}{cc}
4 & \text { for } x<0 \\
-\frac{1}{2} & \text { for } x>0
\end{array}\right.
$$

with the graph is given in Figure 1.
Now we have:

Figure 1: The graph of $f(x)=\frac{7 x-|9 x|}{4 x}$ for Section 1.2, Question 3.
(a) $\lim _{x \rightarrow 0-} f(x)=4$
(b) $\lim _{x \rightarrow 0^{+}} f(x)=-\frac{1}{2}$
(c) $\lim _{x \rightarrow 0} f(x)$ does not exist because the one sided-limits are not equal
(d) $\lim _{x \rightarrow 4} f(x)=-\frac{1}{2}$
(e) $\lim _{x \rightarrow-\frac{6}{5}} f(x)=4$
3. (a) First we consider values to the left of $x=4$:

x	3.5	3.9	3.99	3.999	3.9999
$f(x)$	0.94118	0.90722	0.90070	0.90007	0.90001

and then values to the right of $x=4$:

x	4.5	4.1	4.01	4.001	4.0001
$f(x)$	0.86957	0.89320	0.89930	0.89993	0.89999

In both cases, it appears that the function is tending towards a value of 0.9 as x approaches 4. Hence we may conclude that

$$
\lim _{x \rightarrow 4} \frac{2 x^{2}-7 x-4}{3 x^{2}-14 x+8}=0.9=\frac{9}{10}
$$

(b) First we consider values to the left of $x=0$:

x	-1	-0.5	-0.1	-0.01	-0.001
$f(x)$	-3.3860	-0.1657	-0.0822	-0.0800	-0.0800

and then values to the right of $x=0$:

x	1	0.5	0.1	0.01	0.001
$f(x)$	-3.3860	-0.1657	-0.0822	-0.0800	-0.0800

Since the behaviour of the function is the same on either side of $x=0$, we can conclude that

$$
\lim _{x \rightarrow 0} \frac{\tan ^{2}(x)}{\cos (5 x)-1}=-0.08=-\frac{2}{25}
$$

(c) First we consider values to the left of $x=-1$:

x	-1.5	-1.1	-1.01	-1.001	-1.0001	-1.00001
$f(x)$	-7.333	-4.238	-3.795	-3.755	-3.7505	-3.7500

and then values to the right of $x=-1$:

x	-0.5	-0.9	-0.99	-0.999	-0.9999	-0.999999
$f(x)$	-2.16	-3.333	-3.705	-3.746	-3.7496	-3.74998

In each case, it seems that as $x \rightarrow-1$, the function is tending towards a value of -3.75 or $-\frac{15}{4}$. We can deduce that

$$
\lim _{x \rightarrow-1} \frac{3 x^{2}-9 x-12}{x^{3}+7 x^{2}+15 x+9}=-\frac{15}{4}
$$

(d) First we consider values to the left of $x=-3$:

x	-3.5	-3.1	-3.01	-3.001
$f(x)$	-90	-2130	-210300	-21003000

and then values to the right of $x=-3$:

x	-2.5	-2.9	-2.99	-2.999
$f(x)$	-78	-2070	-209700	-20997000

In each case, it seems that as $x \rightarrow-3$, the function is becoming an unboundedly large negative number. Thus the limit does not exist, but we can write

$$
\lim _{x \rightarrow-3} \frac{3 x^{2}-9 x-12}{x^{3}+7 x^{2}+15 x+9}=-\infty
$$

