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Schedule

Wednesday June 1

Talks are held at ED–2018A. Webex webinar: Wednesday link (Password: GTjYFeZf786).

Time Speaker Title

Chair: Scott MacLachlan

9:55–10:00 Alex Bihlo Welcome

10:00–11:00 Simone Brugiapaglia (plenary) Two case studies in the mathematical founda-

tions of deep learning: rating impossibility and

practical existence theorems

11:00–11:15 Coffee break

11:15–12:15 Aaron Berk Towards generative compressed sensing via ran-

dom sampling in bounded orthonormal systems

12:15–13:00 Lunch break

Chair: Alison Malcolm

13:00–14:00 Scott MacLachlan Optimization and Learning in the Design of Pre-

conditioners

14:00–14:30 Ziad Aldirany Approximating the operator of the wave equa-

tion using deep learning

14:30–15:00 Coffee break

Chair: Yifan Sun

15:00–16:00 Weiqi Wang Compressive Fourier collocation methods for

high-dimensional diffusion equations with peri-

odic boundary conditions

16:00–17:00 JC Loredo-Osti Calibrating a stochastic model for an infectious

disease outbreak in a small population

17:00–18:00 Nick Dexter (remote) Efficient sparse recovery and neural network ap-

proximation for high-dimensional scientific ma-

chine learning

https://mun.webex.com/mun/j.php?MTID=mf522912f606dcb1f3c9e3b730a966d2a
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Thursday June 2

Talks are held at ED–2018A. Webex webinar: Thursday link (Password: nXacXEbm339).

Time Speaker Title

Chair: Hamid Usefi

10:00–11:00 Yifan Sun (plenary) Continuous time trajectories of optimization

methods

11:00–11:15 Coffee break

11:15–11:35 Ince Husain Understanding machine learning generated

molecular representations

11:35–12:00 Sina Mohammad-Taheri Lasso-inspired variants of weighted orthogonal

matching pursuit with applications to sparse

high-dimensional approximation

12:00–13:00 Lunch break

Chair: Rudy Brecht

13:00–14:00 Hamid Usefi Clustering, multicollinearity, and singular vec-

tors

14:00–14:30 Changxiao Sun Normalizing flows in seismic full waveform in-

version

14:30–15:00 Subedika Debbarma Using the attention mechanism for understand-

ing frequency contribution in earthquake mag-

nitude estimation

15:00–15:30 Coffee break

Chair: Simone Brugiapaglia

15:30–16:30 Rudy Brecht Predicting model uncertainty using deep neural

networks

16:30–17:30 Jingjing Zheng Handling slice permutations and transpose vari-

ability in tensor Recovery

17:30–18:00 Peter Lelievre (remote) Inversion of geophysical data on unstructured

meshes using deep learning neural networks

https://mun.webex.com/mun/j.php?MTID=m18653400d6de2fd9ed4a1fa5aedc46d9
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Friday June 3

Talks are held at ED–2018A. Webex webinar: Friday link (Password: tPr7R6xb8HN).

Time Speaker Title

Chair: Terrence Tricco

10:00–11:00 Amer El-Samman Interpretability of graph convolutional neural

networks on molecules

11:00–11:15 Coffee break

11:15–12:15 Kyle Nickerson Deep generative models for creating synthetic

transaction sequences and other complex data

12:15–12:35 Ayesha Rathnayake Robust principal component regression analysis

https://mun.webex.com/mun/j.php?MTID=m3ff30c090768cd5d4b20d775afd4afbf
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Abstracts

Simone Brugiapaglia (Concordia University) – plenary

Two case studies in the mathematical foundations of deep learning: rating

impossibility and practical existence theorems.

Deep learning is having a profound impact on scientific research. Yet, while deep neural networks

continue to be applied to and show impressive performance in a wide variety of fields including

scientific computing, their mathematical foundations are far from being well understood. In this

talk, we will present recent developments in this direction by discussing two case studies.

First, motivated by applications in cognitive science, we will illustrate some “rating impossi-

bility theorems”. These theorems can identify frameworks where neural networks are provably

unable to generalize outside the training set in the seemingly simple scenario of learning ”identity

effects”, i.e. classifiying whether two objects are identical or not.

Then, motivated by the construction of surrogate models in scientific computing, we will

present so-called “practical existence theorems”. These theorems combine approximation-theorical

results for deep neural networks with sparse high-dimensional polynomial approximation meth-

ods based on compressed sensing. They provide sufficient conditions on the network architecture,

the training optimization problem, and the number of samples able to guarantee accurate ap-

proximation of (Hilbert-valued) holomorphic functions of many variables.

In both cases, we will illustrate numerical examples that either validate or ”challenge” our

theorems. We will conclude by discussing current research projects and open questions.

Aaron Berk (McGill University)

Towards generative compressed sensing via random sampling in bounded or-

thonormal systems

In a work by Bora, Jalal, Price & Dimakis, a mathematical framework was developed for com-

pressed sensing guarantees in the setting where the measurement matrix is Gaussian and the

signal structure is the range of an L-Lipschitz function (with applications to generative neural

networks). The problem of compressed sensing with generative models has since been exten-

sively analyzed when the measurement matrix and/or network weights follow a (sub-)Gaussian

distribution. In this talk, we outline a framework for moving beyond the sub-Gaussian assump-

tion, to measurement matrices that are derived by randomly sampling rows of a unitary matrix

corresponding to a bounded orthonormal system. Our framework uses generic chaining ideas

clarified by Dirksen (2015) and counting arguments for linear regions of ReLU networks eluci-

dated, for instance, by Naderi & Plan (2021). After providing an overview of our progress so

far, we outline possible avenues of continuation and solicit audience discussion.
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Scott MacLachlan (Memorial University of Newfoundland)

Optimization and Learning in the Design of Preconditioners

Computer simulation algorithms are a major tool in many areas of science and industry, partic-

ularly in areas where the behaviour of fluids or complex materials governs the physical processes

of interest. A typical core of these tools is the numerical approximation of the solution to coupled

nonlinear systems of partial differential equations, relying on nonlinear and linear solvers, such

as Newton’s method and preconditioned Krylov iterations. Among the most effective precondi-

tioners for these systems are multigrid and domain decomposition methods, which use multiscale

representations of the systems to be solved to achieve linear-scaling complexity for the solution

of these linear systems. These preconditioners typically rely on heuristics in their construction,

to approximate solutions to underlying combinatorial (and other) optimization problems that

specify parameters and other components of the preconditioners, based on the discrete problem

to which they are being applied. In this talk, I will discuss the use of advanced optimization

and machine learning techniques to approximately solve these optimization problems and the

impact these techniques can have on advanced preconditioner design.

Ziad Aldirany (Polytechnique Montreal)

Approximating the operator of the wave equation using deep learning

The solution of the wave equation is required in a wide variety of fields, such as seismology,

electromagnetism, and acoustics. In the last few years, a number of deep learning methods

have been developed for the solution of PDE-based problems, with the objective of producing

techniques that are more flexible and faster than the traditional FEM, FD, FV approaches.

Deep operator networks (DeepONet) attempt to solve PDEs by learning the inverse of the

differential operator for a wide class of initial data, rather than learn a single solution. However,

this approach is especially expensive for problems containing high frequencies, such as those

with the linear wave equation. For the approximation of the homogeneous wave equation, we

present a neural network architecture that is based on the integral representation formula of the

wave equation. This architecture yields a faster learning and a better generalization error when

compared to the classical DeepONet architecture. Moreover, with the proposed architecture,

a trained network can be retrained for solutions with higher frequencies which results in an

efficient learning strategy for high frequency functions. Numerical results in 1D and 2D will be

presented to analyze frequency dependent convergence of the proposed approach.

Weiqi Wang (Concordia University)

Compressive Fourier collocation methods for high-dimensional diffusion equa-

tions with periodic boundary conditions

High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling

tool, with applications ranging from finance to computational chemistry. However, standard nu-

merical techniques for solving these PDEs are typically affected by the curse of dimensionality.

In this work, we tackle this challenge while focusing on stationary diffusion equations defined

over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress
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in sparse function approximation in high dimensions, we propose a new method called compres-

sive Fourier collocation. Combining ideas from compressive sensing and spectral collocation,

our method replaces the use of structured collocation grids with Monte Carlo sampling and

employs sparse recovery techniques, such as orthogonal matching pursuit and `1 minimization,

to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical

analysis showing that the approximation error of the proposed method is comparable with the

best s-term approximation (with respect to the Fourier basis) to the solution. Using the recently

introduced framework of random sampling in bounded Riesz systems, our analysis shows that

the compressive Fourier collocation method mitigates the curse of dimensionality with respect

to the number of collocation points under sufficient conditions on the regularity of the diffusion

coefficient. We also present numerical experiments that illustrate the accuracy and stability of

the method for the approximation of sparse and compressible solutions.

JC Loredo-Osti (Memorial University of Newfoundland)

Calibrating a stochastic model for an infectious disease outbreak in a small

population

There are many ways to model the progression of an infectious disease when the process has

already started and the population is large. The models go from simple Lotka-Volterra-like

models to those highly compartmentalised. These models can be deterministic or stochastic.

In this presentation, we present some of the most common stochastic models used to model an

infectious disease outbreak and use Newfoundland and Labrador public data to illustrate their

performance.

Nick Dexter (Simon Fraser University)

Efficient sparse recovery and neural network approximation for high-dimensional

scientific machine learning

Sparse reconstruction techniques from compressed sensing have been successfully applied to

many application areas, including signal processing, inverse problems in imaging, and approxi-

mation of solutions to parameterized partial differential equations (PDE). Such approaches are

capable of exploiting the sparsity of the signal to achieve highly accurate approximations with

minimal sample complexity. For problems whose solutions possess a great deal of structure,

their recovery properties can be further enhanced through a combination of carefully selected

weighting or structured sampling schemes. Recently connections between compressed sensing

and deep learning have been explored, and the existence of deep neural network (DNN) architec-

tures which achieve the same sample complexity and accuracy as compressed sensing on function

approximation problems have been established. In this work, we further explore these connec-

tions and sparse neural network approximation in the context of high-dimensional parameterized

PDE problems. We provide a full error analysis for such problems, explicitly accounting for the

errors of best approximation (describing DNN expressibility), spatial discretization of the PDE,

and the algorithm used in solving the underlying optimization problem. We complement our

theoretical contributions with detailed numerical experiments, demonstrating the potential for

sparse neural network approximation in scientific machine learning contexts.
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Yifan Sun (SUNY Stony Brock) – plenary

Continuous time trajectories of optimization methods

Understanding the behavior of optimization methods is a key component in unraveling the train-

ing behavior of machine learning tools, including deep neural networks. In general, convergence

proofs are the main standard for giving guarantees on method behavior and robustness; however,

these proofs may be very difficult to construct, verify, and use in gaining intuition. Recently,

there has been increased interest in using continuous-time analysis, in which optimization meth-

ods are viewed as Euler discretizations of continuous flows. The flow itself is then derived and

analyzed using standard dynamical systems tools, often allowing for simpler analysis, shorter

proofs, and more intuition. Additionally, in cases where the flow rate is faster than the best

known method rate, higher order discretization schemes can be used to mitigate discretization

error, which can begin to close this gap and produce improved methods, for cheap additional

overhead. In this talk, I will walk through the flow analysis in three scenarios: gradient descent

on quadratic problems, momentum-based acceleration, and projected gradient descent over gen-

eral convex problems and sets. While this study is still fledgling, it can hopefully inspire increased

interest in using such tools for larger, more complex machine learning scenarios.

Ince Husain (University of New Brunswick)

Understanding machine learning generated molecular representations

With the rise of machine learning (ML) techniques for scientific prediction, computational

chemists are interested in understanding how machine learning algorithms represent molecules.

Specifically, there is interest in investigating whether ML-generated representations of molecules

can be related to those used in computational techniques that are traditional to computational

chemistry. In this study, this is examined by comparing machine learning representations of

molecules to those used in Density Functional Theory (DFT) calculations. The neural network

SchNet generates molecular representations in the form of ‘embedding vectors’, while DFT rep-

resents molecules by their spatial charge densities. These representations were visualized and

statistically compared. Results from this study suggest that, although SchNet was trained on

DFT datasets, it generates more specific molecular representations than DFT that adhere more

strongly to traditional chemical understanding. Ideas for further study to interpret machine

learning representations of molecules will be discussed.

Sina Mohammad-Taheri (Concordia University)

Lasso-inspired variants of weighted orthogonal matching pursuit with appli-

cations to sparse high-dimensional approximation

Motivated by recent developments in sparse high-dimensional approximation from Monte Carlo

sampling, we propose new weighted generalizations of the Orthogonal Matching Pursuit (OMP)

algorithm. Greedy algorithms of this type are more computationally efficient than convex

optimization-based methods for small values of the target sparsity and offer a promising way to

mitigate the curse of dimensionality. In this work, we propose new theoretically-justified greedy

selection criteria that are inspired by variants of the LASSO optimization program. A key issue
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is the robustness of the optimal choice of the tuning parameter with respect to the measurement

noise, which is realized by the square-root LASSO program in the context of convex optimiza-

tion. We investigate how this property is carried over into the context of LASSO-based OMP

methods. Conducting numerical experiments in high-dimensional polynomial approximation,

we show the efficacy of the proposed algorithms by studying the recovery error as a function of

the algorithm iterations. Moreover, we illustrate settings where the optimal choice of the tuning

parameter is more robust against the noise.

Hamid Usefi (Memorial University of Newfoundland)

Clustering, multicollinearity, and singular vectors

In this talk, we shall discuss how to find colinearities between columns of a matrix. Let A be a

matrix and denote by A† its (Moore-Penrose) pseudo-inverse. We show that up to a permutation

of columns of A, the projector matrix P = I − A†A has a block diagonal form. Furthermore,

the connected components of the graph associated to P correspond to clusters of columns of A

so that columns in a cluster correlate only with the columns in the same cluster. We discuss

some applications to solutions of least square problems as well as supervised learning.

Changxiao Sun, Alison Malcolm (Memorial University of New-

foundland) and Rajiv Kumar (Schlumberger)

Normalizing flows in seismic full waveform inversion

The normalizing flows method has gained popularity recently in the machine learning field.

Normalizing flows are trained to transfer a simple analytical probability distribution to a more

complex distribution through a set of invertible and differential transforms. Compared with

Markov Chain Monte Carlo (MCMC) methods, we are able to provide an approximation of the

posterior distribution, rather than an ensemble of posterior samples. In this presentation, we

show how we use normalizing flows to solve the full waveform inversion (FWI) problem, a high-

precision seismic imaging method seismic data. To facilitate the computations, we use a local

wave-equation solver that allows us to solve the wave equation in a small subset of our model.

This allows us to compute an estimate of the uncertainty in our final images, rather than just a

single image.

Subedika Debbarma and Alison Malcolm (Memorial University

of Newfoundland)

Using the attention mechanism for understanding frequency contribution in

earthquake Magnitude Estimation

The magnitude of an earthquake is defined as the energy it emits during rupture. To measure

the magnitude, there are many scales currently in use,the most common being: the Richter

scale and the moment magnitude scale. The Richter scale (also known as the local magnitude

scale) takes magnitude recordings from seismic stations across the globe. The moment magni-

tude scale measures the magnitude using the seismic moment or using the source physics of an
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earthquake. In this study, we devised a machine learning model to estimate the local magni-

tude of an earthquake in the frequency domain. The dataset consists of readings from several

Wood Anderson instruments (seismometers) stationed in various parts of the world. The time

domain data were smoothed using a ten percent Hanning taper and transformed using the Fast

Fourier Transform. Our goal is to understand the individual contribution of the frequencies in

estimating the magnitude which has not been previously investigated. We replace convolutional

neural networks (CNN) used in prior studies with attention based bidirectional recurrent neu-

ral networks (RNN) for performing ‘informed’ dimensionality reduction. Our model estimates

are close to those computed using CNNs but give us additional information as to why certain

readings were omitted.

Rudy Brecht (University of Bremen)

Predicting model uncertainty using deep neural networks

Ensemble prediction systems are an invaluable tool for weather forecasting. Practically, en-

semble predictions are obtained by running several perturbations of the deterministic control

forecast. However, ensemble prediction is associated with a high computational cost and often

involves statistical post-processing steps to improve its quality. Here we propose to use deep-

learning-based algorithms to learn the statistical properties of an ensemble prediction system,

the ensemble spread, given only the deterministic control forecast. Thus, once trained, the costly

ensemble prediction system will not be needed anymore to obtain future ensemble forecasts, and

the statistical properties of the ensemble can be derived from a single deterministic forecast. We

adapt the classical pix2pix architecture to a three-dimensional model and also experiment with

a shared latent space encoder–decoder model, and train them against several years of operational

(ensemble) weather forecasts for the 500 hPa geopotential height. The results demonstrate that

the trained models indeed allow obtaining a highly accurate ensemble spread from the control

forecast only.

Jingjing Zheng (Memorial University of Newfoundland)

Handling slice permutations and transpose variability in tensor recovery

With the growing explosion of high-dimensional tensor data, such as color images and videos,

low-rank tensor recovery methods are getting more popular for exploiting intrinsic low-rankness

within the data. One interesting question in the tensor recovery is asked: are the ranks of

transposed tensors or tensors with slice permutations equivalence? The answer is no! It means

the low-rankness prior information within the data cannot be utilized in an effective way when

we use tensor recovery to deal with the tensor data under certain transpose operators or slice

permutations. These two problems are called Tensor Variability (TV) and Slice Permutations

Variability (SPV) of tensor rank. To solve TV, the influence caused by tensor transpose opera-

tors for a new tensor rank called Weighted Tensor Average Rank (WTAR) is proposed to learn

the low rankness of tensor data from different directions. Besides, SPV of several key tensor re-

covery problems theoretically and experimentally are discussed. The obtained conclusion shows

that there is a huge gap between tensor recovery results by slice permutations. To overcome

SPV, a novel tensor recovery algorithm by Minimum Hamiltonian Circle for SPV (TRSPV), is
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developed, which exploits low dimensional subspace structures within data tensor more exactly.

The experimental results demonstrate the effectiveness of the proposed methods in solving TV

and eliminating SPV of tensor recovery.

Peter Lelievre (Mount Allison University)

Inversion of geophysical data on unstructured meshes using deep learning

neural networks

We have applied neural networks to the geophysical inverse problem of assessing buried pipeline

infrastructure using magnetic survey data. The underground volume of interest was discretized

using rectilinear or unstructured tetrahedral meshes, with piecewise magnetization in each mesh

cell, which is the typical approach for most geophysical inverse problems. The network was

trained with a suite of models with pipelike bodies of different shapes, sizes and magnetizations.

The subsequent ML-based inversion was able to recover reasonable representations of the ground

truth for synthetic problems, and interpretable results for real data scenarios. In other work, we

are developing methods for geophysical inversion that use a fundamentally different discretization

and parameterization of the volume of interest: we represent anomalous bodies using wireframe

surfaces comprising tessellated triangles, and we define control nodes for changing the geometry

of those surfaces. The surfaces represent the interfaces between different material units, for

example between different types of rocks, or between soil and pipeline infrastructure. The task

of the inversion is to move the surfaces in some estimated initial model to better fit the measured

geophysical data. Ongoing work has successfully applied these surface-geometry inversion (SGI)

methods to mineral exploration problems using magnetic, gravity and electromagnetic data.

Currently, we solve SGI problems using a genetic algorithm, and when computationally feasible

we follow this with the Metropolis-Hastings algorithm to estimate uncertainties on the surface

geometry. We are now considering the application of ML methods to SGI. The intention of this

talk is to not to delve into the ML details of our previous work, but rather to present these

applied scenarios and initiate discussion of possibilities for future

Amer El-Samman (University of New Brunswick)

Interpretability of graph convolutional neural networks on molecules

Deep learning is promising an efficient exploration of the enormous chemical space, the endless

number of molecular possibilities that one can build from the periodic table of elements. One of

the most recent designs, SchNet graph convolutional neural network, uses molecular graphs as

input for prediction of molecular properties, such as the total energy. SchNet resolves highly ac-

curate total energies without invoking any physical or chemical principles but simply by looking

at the coordinates of each element in a molecule. For this reason, it is unclear if the algorithm

is interpretable in terms of fundamental concepts or just a random “black box” fitting tool. In

this work, we show that the internal layer activations of SchNet build a highly interpretable and

useful representation of chemistry. The representation hinges on the fundamental functional

group concept of chemistry. These chemical fragments, a.k.a functional groups, are revealed

by the high-dimensional layer activations of the neural network and signify the parts of the

molecule that are deemed significant for the algorithm’s decision making. The representation is
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highly structured and can be explored with basic linear algebra arithmetic, thus possibly giving

an alternative to exploring chemical changes and reactivity using the internal activation vectors

of the algorithm. The space also reveals concepts of molecular similarity and may be used to

evaluate the notion of “distance” between two molecules. Current work is investigating the

structure of this space and how it may be beneficial for understanding chemistry and potential

of AI technology.

Kyle Nickerson (Memorial University of Newfoundland)

Deep generative models for creating synthetic transaction sequences and other

complex data

Synthetic data are artificially generated data that closely model real-world measurements, and

can be a valuable substitute for real data in domains where it is costly to obtain real data, or

privacy concerns exist. Synthetic data has traditionally been generated using computational

simulations, but deep generative models (DGMs) are increasingly used to generate high-quality

synthetic data. While DGMs have produced impressive synthetic samples from many domains —

including images, written language, and audio — challenges still exist in generating high-quality

synthetic samples in other domains. In this talk, we provide an overview of the capabilities

of current DGMs, and introduce Banksformer, a novel DGM that we developed for generat-

ing synthetic sequences of banking transactions and other temporal event sequences. We will

discuss the unique challenges of modeling this type of data with DGMs, and how we designed

Banksformer to tackle these challenges. Additionally, we will discuss challenges in evaluating

synthetic data, and present results comparing Banksformer to other state-of-the-art DGMs.

Ayesha Rathnayake and Asokan Variyath (Memorial University

of Newfoundland)

Robust Principal Component Regression Analysis

Many real-time applications use large data sets with high dimensions that can be challenging

in data analysis. The complexity of the model can be reduced by selecting the most important

features that are strongly related to the response variable. Model selection using regression anal-

ysis is the most popular technique, but the presence of multicollinearity can adversely influence

the selection process. Principal component analysis (PCA) produces independent, uncorrelated

features that can be used to perform principal component regression. PCA can also be used as

a dimension reduction method for higher-dimensional data while retaining as much variation as

possible in the original data set. Outliers in real data can be observed for a variety of reasons.

Since both regression analysis and PCA are sensitive to outliers, robust methods can be used to

detect the outliers. A large number of simulations conducted to compare different approaches.


