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Abstract

In this paper, we study the selection mechanism of the minimal wave speed for traveling waves

to an abstract monotone semiflow. A necessary and sufficient condition for the nonlinear selection

of the minimal wave speed is established. Based on this result, we then derive conditions under

which the linear or nonlinear selection is realized by way of comparison principle. Our results on

nonlinear selection are new and novel, and they can be viewed as breakthroughs in this topic; and

for the linear selection, we successfully improve previous conventional results that always require

the monotone semiflow is dominated by its linear map. The applications to various biological

models are also successful. We establish a series of new results to reaction-diffusion models with

delay interactions, a lattice system, a scalar integro-difference equation and a cooperative system,

which completely solve some open problems and conjectures in the related references.
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1 Introduction

Traveling waves and front propagations for reaction-diffusion equations have been extensively studied

in biological, chemical and physical sciences, since the pioneering work of Fisher [8] and KPP [17] on

the scalar equation

ut = uxx + f(u), u(0, x) = u0(x), (1.1)

where u(t, x) is a real-valued function of spatial variable x and time t, and u0(x) is a non-negative

initial function. The nonlinear function f satisfies f(0) = f(1) = 0, f ′(0) > 0 and f ′(1) < 0 with

f(x) > 0 for x ∈ (0, 1). Of biological reasons, one is particularly interested in the invasion onto

the unstable equilibrium and thus considers traveling wave solutions in the forms u(t, x) = U(z),

z = x − ct, moving with a speed c, where the profile function U satisfies the ordinary differential

equation

Uzz + cUz + f(U) = 0 (1.2)

subject to

U(−∞) = 1, U(+∞) = 0. (1.3)

It is well-known that (1.2)–(1.3) has non-negative traveling wave fronts U if and only if c ≥ cmin,

where cmin is a constant that is related to the nonlinear function f and usually has no explicit formula.

Linear stability analysis of (1.2)–(1.3) around zero easily indicates that the wave speed c must satisfy

c ≥ c0 = 2
√

f ′(0) in order to have a nonnegative wave profile. This provides an estimate of the speed

for the waves, while the determinacy of the minimal speed cmin, depending on the nonlinearity of the

function f , is usually non-trivial. When cmin = c0, the minimal wave speed is linearly selected and

the corresponding wave profile is called a pulled front; otherwise, when cmin > c0, the wave speed

is non-linearly selected and the corresponding wave profile is called a pushed front, where the speed

cmin cannot be determined by the linearization at the leading edge of the front, but is controlled by

the entire wave structure.

The problem of the minimal speed selection for (1.1) was also discussed in the physical literature

[3–5, 32–34]. Among these papers, Van Saarloos’ formal analysis argued that the nonlinear speed

selection is realized on the existence of certain type of traveling wave solution with a faster decay

coefficient chosen from the two possible decay rates. However, Van Saarloos’s nonlinear marginal

stability analysis has no mathematical rigor, awaiting further development. The first rigorous study

on the minimal wave speed selection for (1.1) goes back to Aronson and Weinberger [1,2] where they

established the definition of the asymptotic spreading speed c∗ and also showed that the speed c∗ is

indeed the minimal speed of all traveling wave fronts. In other words, they significantly proved that

a unique (up to translation) traveling wave U exists for all given c ≥ c∗, where c∗ is the spreading

speed in the sense that

lim
|c|>c∗, t→∞

u(t, x+ ct) = 0, lim
|c|<c∗, t→∞

u(t, x+ ct) = 1, (1.4)

uniformly for x in any bounded domain, with u(t, x) being the solution for (1.1) under some properly-

chosen initial data u0(x) that have a compact support in (−∞,∞). They also showed for c < c∗,

there are no nonnegative traveling wave solutions subject to (1.3). Furthermore, they provided the

asymptotic behavior for the wave profile near positive infinity with

lnU ∼ λ+(c) z, as z → ∞, for c > c∗ (1.5)

2



and

lnU ∼ λ−(c) z, as z → ∞, for c = c∗, (1.6)

where

λ±(c) =
1

2

(
−c±

√
c2 − 4f ′(0)

)
. (1.7)

This is the most important feature for the linear selection vs. nonlinear selection, which agrees to

Van Saarloos’ argument [32–34] that the wave front with the minimal speed decays exponentially

to zero at infinity with the faster rate λ = λ− instead of λ = λ+. However, this argument didn’t

say when the case c∗ = c0 is chosen and when the case c∗ > c0 is realized. Therefore, they didn’t

provide an effective method to determine when the linear or nonlinear selection is realized. Recently

Lucia, Muratov and Novaga [24], based on Aronson and Weinberger’s result (1.5)-(1.6), developed

a variational characterization for the wave front with the minimal speed c∗ > c0 and established a

necessary and sufficient condition for the nonlinear selection mechanism. The following easy-to-apply

results are directly from [24].

Lemma 1.1. If
∫ u
0 f(s)ds ≤ 1

2f
′(0)u2, u ∈ (0, 1), then the linear selection is realized.

Lemma 1.2. If f ′(0)u ≤ 1
2

∫ 1
0 f(u)du, then the nonlinear selection is realized.

Remark 1.1. Lemma 1.1 covers the classical result that the linear selection is realized for (1.1) if

f(u) ≤ f ′(0)u for u ≥ 0; Lemma 1.2 is new and has not been established before.

For traveling waves to general reaction-diffusion systems and integro-difference equations, we refer

to the recent advancements of Weinberger and his collaborators, see e.g., [19, 20, 39]. They extended

the idea of the spreading speed and monotone traveling waves in [23,37] to study a monotone map

un+1 = Q[un], n = 0, 1, 2, · · · ,

where un = (u1n(x), u
2
n(x), · · · , ukn(x)) in C = BC(H,Rk) is the solution at time nτ , with τ being a

fixed time. For reaction-diffusion systems, H is the real line or the integer points, i.e., H = R or Z.
Under some proper assumptions, they established the existence of the spreading speed c∗ as well as

the existence of traveling wave fronts. Linear selection of the minimal wave speed is realized under

some further condition (i.e., the map is dominated by its linear part on a particular direction), but

no nonlinear selection mechanism has been established.

In 2007, Liang and Zhao developed the idea of Weinberger and his collaborators [19, 20, 39] to

consider

un+1 = Q[un], n ≥ 0, u0 ∈ C([−τ, 0]×H,Rk), (1.8)

where C([−τ, 0]×H,Rk) is the set of bounded and continuous functions from [−τ, 0]×H to Rk, H is

the spatial habitat and τ is the time delay. They intended to establish the theory of wave propagation

for monotone semiflows that cover autonomous time-delayed reaction-diffusion equations and lattice

systems. With a further condition that Q admits only two fixed points 0 and β, they proved a series

of results such as:

(a) the existence of spreading speed c∗;

(b) the existence of the minimal speed cmin such that the map Q has traveling waves w(θ, x)

satisfying Qn[w] = w(θ, x− nc), w(·,−∞) = β and w(·,+∞) = 0 if and only if c ≥ cmin;
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(c) the equality c∗ = cmin;

(d) the estimate of the spreading speed with c∗ ≥ c0 where c0 is the linear speed;

(e) the linear selection c∗ = c0 if Q[u] ≤ M [u] for all u ∈ Cβ, where the operator M is the

linearization of Q at zero (Fréchet derivative), i.e.,

M [u] = lim
ρ→0

Q[ρu]

ρ
. (1.9)

The more details can be founded in [21].

The research contributions from [19–21,39] are substantial extensions of the classical KPP-Fisher

equation onto various scientific models. However, the problem on the speed selection is not deeply

touched in their investigations. Current situation is that they only provided the linear selection mech-

anism under a strong condition Q[u] ≤ M [u], and no nonlinear selection mechanism has been estab-

lished. In our opinion, the main challenges and difficulties are due to the following items:

(1) The classical phase plane analysis plus the construction of an invariant region definitely fails

for the construction of traveling waves to the abstract map Q;

(2) The variational principle in Lucia, Murator and Novaga [24] CANNOT be applied to general

monotone semiflows;

(3) Van Saarloos’s nonlinear marginal stability analysis has no mathematical rigor and requires

further development.

(4) For the general map in (1.8), as to the linear selection, one can compare the map Q with its

linearized rival M . Once the map Q is dominated by its linear part on a particular direction, it

is concluded that the linear selection is realized. However, for the study of nonlinear selection,

usually we don’t know which system (or map) to be compared with because no information

about the minimal speed as well as its corresponding wavefront is known in advance. The

method of geometrical singular perturbation is useful for finding the pushed front in [9], but it

only works for finite dimensional space and small parameter regions.

Due to the significance of the spreading speed (the minimal speed) in the invasion of multiple

biological species model or chemical reactions, it is particularly important to overcome the above

difficulties in establishing the speed selection mechanism for general models including various reaction-

diffusion systems. The purpose of this paper is on this direction, and we aim to work out the speed

selection mechanism for the abstract monotone semiflow in (1.8). Based on a perturbation argument

coupled with a comparison principle, we first establish a necessary and sufficient condition for the

nonlinear selection. In view of this result, some easy-to-apply theorems on linear and nonlinear

selection are provided respectively. Direct applications of our theorems and corollaries to reaction-

diffusion equations with delayed interaction, lattice systems, a scalar integro-difference model and a

cooperative system give some encouraging results and solve some important conjectures in literature.

For instance, for the time-delayed reaction-diffusion equation

ut = uxx + f(u, u(t− τ, x)), (1.10)

where f satisfies

f(r, s) ≥ 0, ∂f2(r, s) ≥ 0, for 0 ≤ r, s ≤ 1,
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f(0, 0) = f(1, 1) = 0, f(r, r) > 0 for 0 < r < 1,

and

∂f1(0, 0) + ∂f2(0, 0) > 0.

Schaaf’s Theorem 2.7 in [35] indicated that the minimal speed is always linearly selected without

any extra condition. This is incorrect because the nonlinear selection can happen for some nonlinear

functions f in (1.10), see Remark 3.3 in Section 3. Therefore, our result gives a new understanding

of this topic, that is, we not only establish the nonlinear selection mechanism, but also provide a

new result on the linear selection with a mild condition on f that does not necessarily require the

nonlinearity is dominated by its linear part. In particular, for the delayed reaction diffusion equation

(3.13) with the Hadeler and Rothe nonlinearity, we establish a necessary and sufficient condition for

the selection mechanism.

The paper is organized as follows. The next section is devoted to summarizing the preliminaries

and presenting our main results and their proofs. Some significant applications are shown in Sections

3-5. Finally, in Section 6 we summarize our results and discuss possible avenues for further research.

2 Linear and Nonlinear Selection

In this section, we first incorporate the setting of phase space, the definition of spreading speed and the

existence of traveling waves that were originated from [23,37,39] and further extended in [21]. Based

on this setting, our breakthroughs on the speed selection mechanism are successfully established in

Section 2.1.

Now we proceed to present the setting of phase space for a monotone dynamical system.

Let τ be a nonnegative real number and C = C([−τ, 0] × H,Rk) be the set of bounded and

continuous functions from [−τ, 0] ×H to Rk with | · |C = || · ||∞, where H = R or Z. Any vectors in

Rk and any element in C̄ = C([−τ, 0],Rk) can be regarded as a function in C. C̄ is equipped with the

maximum norm and the positive cone is defined by C̄+ = {ϕ ∈ C̄ : ϕ(θ) ≥ 0, θ ∈ [−τ, 0]}. The space

C is also equipped with the compact open topology in the sense that vn → v in C means that the

sequence vn(θ, x) converges to v(θ, x) uniformly for (θ, x) in every compact set. A bounded subset Cβ
is defined by Cβ = {φ ∈ C : 0 ≤ φ ≤ β} where β ∈ C̄ with β = (β1, β2, · · · , βk) ≫ 0.

Here for the notations “<,≤,≪” of vectors or vector-valued functions, we follow the definitions

in [21, page 3]. For the division and multiplication of vectors or vector-valued functions, we mean

component-wise.

In [21] Liang and Zhao developed the ideas in Weinberger [37] and Lui [23] to consider a map

un+1 = Q[un],

where un = (u1n, u
2
n, · · · , ukn) ∈ C. Define the translation operator Ty as Ty(u)(θ, x) = u(θ, x − y) for

any given y ∈ H. The map Q : Cβ → Cβ satisfies the following assumptions:

(A1) Ty ◦Q = Q ◦ Ty.

(A2) Q is continuous with respect to the compact open topology.
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(A3) One of the following two conditions holds:

(a) Q[Cβ] is precompact in Cβ.

(b) There is a nonnegative number ζ < τ such that Q[u](θ, x) = u(θ + ζ, x), −τ ≤ θ ≤ −ζ, and

the operator

S[u](θ, x) =

{
u(0, x), − τ ≤ θ < −ζ,

Q[u](θ, x), − ζ ≤ θ ≤ 0

is continuous on Cβ, and S[Cβ] is precompact in Cβ .

(A4) Q : Cβ → Cβ is monotonic (order-preserving) in the sense Q[u] ≥ Q[v] whenever u ≥ v in Cβ.

(A5) Q : C̄β → C̄β has exactly two fixed points 0 and β, and limn→∞Qn(r) = β for any r ∈ C̄β with

0 ≪ r ≪ β.

To define the spreading speed, let α ∈ C̄β, with 0 ≪ α ≪ β, and assume ϕ = (ϕ1, ϕ2, · · · , ϕk) ∈ Cβ
has the properties that

(B1) ϕi(θ, ·) is a non-increasing function for any fixed θ ∈ [−τ, 0] and 1 ≤ i ≤ k.

(B2) ϕi(θ, x) = 0 for any θ ∈ [−τ, 0], x ≥ 0, 1 ≤ i ≤ k.

(B3) ϕ(θ,−∞) = α(θ) for any θ ∈ [−τ, 0].

Given a real number c, define an operator Rc and a sequence of functions {an}∞n=0 as

Rc[a](θ, s) = max{ϕ(θ, s), T−c[Q[a]](θ, s)}; (2.1)

a0(c; θ, s) = ϕ(θ, s), an+1(c; θ, s) = Rc[an(c; ·)](θ, s). (2.2)

Thus, following the idea of Lui [23], the results below can be proved:

(a) an ≤ an+1 ≤ β;

(b) limn→∞ an(c; θ, s) = a(c; θ, s) pointwise;

(c) a(c; θ, s) is non-increasing in s and c;

(d) a(c; ·,−∞) = β, a(c; ·,+∞) exists in C̄β and is a fixed point of Q.

Using the above properties, the spreading speed c∗ of the operator Q is defined by

c∗ := sup{c : a(c; ·,+∞) = β}. (2.3)

Remark 2.1. Define c∗+ := sup{c : a(c; ·,+∞) ̸= 0}. Since Q admits only two fixed points in C̄β, it
can be proved that c∗ = c∗+.

By a traveling wave solution of the map Q, we mean that a particular function W (θ, x) satisfies

the profile equation

Q[W ](θ, x) = W (θ, x− c) (2.4)

for some constant c and Qn[W ](θ, x) = W (θ, x−nc). We say that the traveling wave solution W (θ, x)

connects β to 0 if W (θ,−∞) = β and W (θ,∞) = 0. Now the main results in [21] on traveling waves

can be summarized into the following lemmas.
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Lemma 2.1 ( [21]). Let Q satisfy (A1)-(A5). Then the following statements are true.

(a) For any c ≥ c∗, Q has a traveling wave W (θ, x − nc) connecting β to 0 such that W (θ, x) is

nonincreasing in x. Moreover, if H = R, then W (θ, x) is continuous in (θ, x).

(b) For any c < c∗, Q has no non-negative traveling wave W (θ, x− nc) connecting β and 0.

A natural extension to time-continuous semiflow {Qt}∞t=0 was also given in [21]. Let {Qt}∞t=0 be a

semiflow on Cβ with Qt(0) = 0 and Qt(β) = β. By a traveling wave solution of the map Qt, we mean

that a particular function W (θ;x) satisfies the equation

Qt[W ](θ, x) = W (θ, x− ct) (2.5)

for some constant c. Likewise, it is said that W (θ, x) connects β to 0 if W (θ,−∞) = β and W (θ,∞) =

0. Similarly, there is the following lemma.

Lemma 2.2 ( [21]). Let {Qt}∞t=0 be a monotone semiflow on Cβ with Qt(0) = 0 and Qt(β) = β for

all t ≥ 0. Suppose that Q = Qt satisfies all the hypotheses (A1)-(A5) for each fixed t, and let c∗ be

the spreading speed of Q1.

(a) For any c ≥ c∗, {Qt}∞t=0 has a traveling wave W (θ, x−ct) satisfying Qt[W ](θ, x) = W (θ, x−ct),

W (θ,−∞) = β, W (θ,+∞) = 0, and W (θ, x) is non-increasing in x.

(b) For any c < c∗, {Qt}∞t=0 has no traveling wave W (θ, x) connecting β and 0.

We now define the minimal speed cmin as

cmin = inf{c : Q has non-increasing traveling waves connecting β and 0 with speed c}. (2.6)

Then the above two lemmas imply that c∗ = cmin, i.e., the asymptotic spreading speed is equal to the

minimal speed of traveling waves.

2.1 Main results on the speed selection

In this subsection we concentrate on the study of speed selection of wave propagation for the abstract

monotone semi-flow Q. Assume that

(A6) Q is Fréchet-differentiable around any φ ∈ [0, β].

Let M be the linearization operator of Q around zero in the sense of (1.9). Suppose that the

following hypotheses are true:

(M1) Ty ◦M = M ◦ Ty.

(M2) M is continuous with respect to the compact open topology.

(M3) One of the following two conditions holds:

(a) M [Cβ] is precompact in Cβ.
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(b) There is a nonnegative number ζ < τ such that M [u](θ, x) = u(θ + ζ, x) for −τ ≤ θ ≤ −ζ,

and the operator S : Cβ → Cβ defined by

S[u](θ, x) =

{
u(0, x), − τ ≤ θ < −ζ,

M [u](θ, x), − ζ ≤ θ ≤ 0

is continuous on Cβ, and S[Cβ] is precompact in Cβ.

(M4) M : Cβ → Cβ is monotonic (order-preserving) in the sense M [u] ≥ M [v] whenever u ≥ v in Cβ.

(M5) Define a linear map Bµ : C̄ → C̄ as

Bµ[α](θ) = M [αe−µx](θ, x = 0), θ ∈ [−τ, 0],

where µ is a positive real number and α is a real vector. We assume that Bµ is compact

and positive on C̄ with the existence of strongly positive eigenvector corresponding to a simple

principal eigenvalue. The principal eigenvalue of B0 is assumed to be greater than 1.

(M6) Let Mφ be the linearization of Q at φ where φ satisfies 0 ≤ φ ≤ β. We assume that Mφ is

compact and positive. In particular, define the linear map Bγ,β : C̄ → C̄ as

Bγ,β[α](θ) = Mβ[αe
γx](θ, x = 0), θ ∈ [−τ, 0].

We assume that Bγ,β is compact and positive on C̄ with the existence of strongly positive

eigenvector corresponding to a simple principal eigenvalue. Let λ̄(γ) be the principal eigenvalue

of Bγ,β and ζγ be the corresponding eigenvector so that λ̄(0) < 1.

Remark 2.2. Here by the Riesz representation theorem, it follows that

Bµ[α](θ) =
M [αe−µx](θ, x)

e−µx
.

Now we want to provide a formula for the linear spreading speed of the operator M . Let λ(µ) be

the principal eigenvalue of Bµ and ζµ(·) be the corresponding strongly positive eigenvector. Define

the linear speed c0 as

c0 = inf
µ>0

lnλ(µ)

µ
=

lnλ(µ̄)

µ̄
. (2.7)

Here we assume that λ(0) > 1 and c0 is attained at a finite value µ = µ̄ > 0. Since λ(µ) is log

convex (see [21]), it is easy to know that for any c > c0, there exist positive numbers µ1(c) and µ2(c),

µ1(c) < µ2(c), such that
lnλ(µ1)

µ1
=

lnλ(µ2)

µ2
= c (2.8)

and
lnλ(µ)

µ
< c for any µ ∈ (µ1, µ2).

When c = c0, we have µ1 = µ2 = µ̄. Furthermore, it can be derived that µ1(c) is a decreasing function

and µ2(c) is an increasing function in c ∈ [c0,∞).
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Remark 2.3. Alternatively, in the case when Bµ in (M5) is reducible, we can follow the idea in [39]

to define the linear speed. Let the matrix Bµ have finite entries for all µ and be in Frobenius form.

The principal eigenvalue of its σth diagonal block is λσ(µ). We assume that λ1(0) > 1 > λσ(0) for

all σ > 1 and define

c0 = inf
µ>0

lnλ1(µ)

µ
=

lnλ1(µ̄)

µ̄
, (2.9)

where µ̄ is assumed to be a finite value. Further assume that λ1(µ̄) > λσ(µ̄) for σ > 1. Then c0 is

called the linear speed of the linear map M , see Theorem 3.1 in [39]. The definition of “reducible”

and “Frobenius” can be found in [39]

From [21], it is clearly shown that c∗ ≥ c0 as long as Q is differentiable around zero in the Fréchet

sense. Now we give the definition of linear selection and nonlinear selection of the spreading speed (or

the minimal speed). This definition is consistent with what we have mentioned in the Introduction

section.

Definition 2.3. The spreading (minimal) speed is linearly selected if c∗ = c0, and nonlinearly selected

if c∗ > c0.

To obtain the speed selection mechanism, we now point out the exponential decay behavior of

traveling waves. Assume that W (θ, x− c) is a traveling wave of Q, satisfying Q[W ](θ, x) = W (θ, x−
c),W (θ,−∞) = β and W (θ,∞) = 0. Also suppose that

Q[W ](θ, x)−M [W ](θ, x) = o(W (θ, x− c)) (2.10)

as x → ∞. For c > c0, a straightforward derivation of the characteristics of the linear part of the

wave profile equation implies either

W (θ, x) ∼ C1ζµ1(θ)e
−µ1(c)x, C1 > 0, (2.11)

or

W (θ, x) ∼ C2ζµ2(θ)e
−µ2(c)x, C2 > 0 (2.12)

as x → ∞.

Remark 2.4. Rigorous proof of (2.11)-(2.12) can be carried out by the method of successive approx-

imation. Other methods such as two sides Laplace transform can also be applied to derive them, see

e.g., [7]. The condition (2.10) is natural and can be easily verified for all reaction-diffusion models.

Our main results are the following theorems and corollaries.

Theorem 2.4 (Necessary and sufficient condition). Let Q satisfy (A1)-(A6) and c∗ be its spreading

speed with the wavefront Wc∗(θ;x) having continuous derivative W
′
c∗ with respect to the second variable.

Assume that (M1)-(M6) are true with the linear speed c0 defined in (2.7). Furthermore, suppose that

M(Wc∗) is strongly positive. Then the spreading speed c∗ is nonlinearly selected if and only if there

exists a speed c = c̄ > c0 so that Q has a non-increasing traveling wave solution Uc̄(θ, x) connecting

β to 0 with the following behavior

Uc̄(θ, x) = C ζµ2(c̄)(θ)e
−µ2(c̄) x as x → ∞ (2.13)

for some positive constant C, where µ2 is defined in (2.8). Furthermore, we have c∗ = c̄.
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Proof. We first prove the sufficiency. Suppose that there exists c̄ > c0 such that the traveling wave

Uc̄(θ, x) has the behavior Uc̄(θ, x) = C ζµ2(c̄)(θ)e
−µ2(c̄) x as x → ∞ for some positive number C. We

first want to show that Q has no traveling waves for any c in (c0, c̄). Assume to the contrary that for

some c ∈ (c0, c̄), we do have a traveling wave Wc(θ, x) satisfying

Wc(θ, x− c) = Q[Wc](θ, x) = M [Wc](θ, x) + [Q[Wc](θ, x)−M [Wc](θ, x)]. (2.14)

Since Wc(·, x) → 0 as x → ∞, it easily follows that [Q[Wc](θ, x)−M [Wc](θ, x)] = o(Wc(θ, x)). Then

near infinity, the leading term of Wc, say W0, must satisfy the equation W0(θ, x− c) = M [W0](θ, x).

Here by the leading term of Wc, we mean that Wc = W0 + O(e−ηx) as x → ∞ for some η > µ1(c).

For c > c0, this linear equation implies either

Wc(θ, x) ∼ W0 ∼ C1ζµ1(θ)e
−µ1(c)x, C1 > 0, (2.15)

or

Wc(θ, x) ∼ W0 ∼ C2ζµ2(θ)e
−µ2(c)x, C2 > 0 (2.16)

as x → ∞. Due to the monotonicity of µ1(c) and µ2(c) in c, this means Wc(θ, x) ≫ Uc̄ for x near the

positive infinity. Near the negative infinity, similarly Wc has the following behavior

Wc ∼ β − ζγe
γx (2.17)

for some positive γ and vector ζγ . To derive a formula for γ, recall thatMβ is the linearization operator

of Q at β and λ̄(γ) is the principal eigenvalue of Bγ,β . From the equation Q[Wc] = Wc(·, x − c), we

can derive that γc + ln λ̄(γ) = 0. Based on the convexity of ln λ̄(γ), it follows that there exists a

unique γ solving this equation and γ is a decreasing function in c for c ≥ c0. This means further that

Uc̄(θ, x) ≪ Wc(θ, x) for x near −∞. Therefore, we can make a shift of distance ξ0 for the variable x

in Wc(θ, x) to satisfy

W̄c(θ, x) = Wc(θ, x+ ξ0) ≫ Uc̄(θ, x).

Applying the monotonicity of the map Q, we have that

W̄c(θ, x− nc) = Qn(W̄c(θ, x)) ≥ Qn(Uc̄(θ, x)) = Uc̄(θ, x− nc̄) (2.18)

for x ∈ (−∞,∞). However, on the line x− nc̄ = z0 for some fixed value z0, we have Uc̄(θ, x− nc̄) =

Uc̄(θ, z0) ≫ 0 and

W̄c(θ, x− nc) = W̄c(θ, z0 + n(c̄− c)) → 0, as n → ∞,

which is a contradiction to (2.18). Therefore, Q has no traveling waves for c ∈ (c0, c̄). By Lemma

2.2, it is impossible to have traveling waves with speed c = c0. Thus, the sufficiency is proved.

For the necessity, we assume that the minimal speed c∗ is nonlinearly selected, i.e., c∗ > c0. We

want to prove that at the speed c = c∗, the traveling wave Wc∗(θ, x) satisfies the following behavior

Wc∗(θ, x) ∼ Cζµ2(c∗)(θ)e
−µ2(c∗)x as x → ∞ (2.19)

for some constant C. This can be shown by way of contradiction. Assume, to the contrary, that

Wc∗(θ, x) ∼ C3ζµ1(c∗)(θ)e
−µ1(c∗)x as x → ∞ (2.20)
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for some positive constant C3 and eigenvector ζµ1(c∗). We shall prove that this assumption will imply

that the operator Q has a traveling wave Wc(θ, x) satisfying

Q(Wc) = Wc(·, x− c), or T−cQ(Wc) = Wc (2.21)

for some speed c = c∗ − δ, where δ is a sufficiently small and positive number such that c∗ is not the

minimal speed, thus giving a contradiction. Indeed, under the assumption (2.20), we define

W̄ = Wc∗(θ, x)ω(x), ω(x) =
1

1 +
ζµ1(c)(θ)

ζµ1(c
∗)(θ)

δe(µ1(c)−µ1(c∗))x
. (2.22)

In the above formulas, the division is component-wise so that the weight function ω is a vector. The

multiplication defining W̄ is also component-wise. Since δ is sufficiently small, W̄ is close to Wc∗

but with a different decaying rate at infinity. We shall apply a perturbation argument to show the

existence of solution to (2.21) when δ is small. In (2.21), set

Wc = W̄ + V (2.23)

and we have an equation for V as

T−cQ(W̄ + V ) = W̄ + V, (2.24)

where V = V (θ, x) is a function to be determined. It follows that

V = T−c∗M(Wc∗)V + F0 +MδV + Fhigh(V ), (2.25)

where

F0 = T−cQ(W̄ )− W̄ , (2.26)

MδV =
[
T−cM(W̄ )− T−c∗M(Wc∗)

]
V (2.27)

and

Fhigh(V ) = T−cQ(W̄ + V )− T−cQ(W̄ )− T−cM(W̄ )V. (2.28)

Here M(W̄ ) is the Fréchet derivative of Q around the function W̄ . After a simple estimate, we have

MδV = O(δ)V , F0 = O(δ), satisfying

F0 = o(e−µ1(c∗)x) as x → ∞.

To find a solution to (2.25), first we recall that for V in the space C0, where

C0 = {u ∈ C([−τ, 0]×H,Rk) : u(θ,±∞) = 0},

M(Wc∗) is defined by

M(Wc∗)[V ] = lim
ρ→0

Q[Wc∗ + ρV ]−Q[Wc∗ ]

ρ
.

It can be seen that the operator T−c∗M(Wc∗) is compact and strongly positive with a principal

eigenvalue λ = 1 and its corresponding eigenvector v̄ = W ′
c∗ . Here it is easy to know that W ′

c∗ shares

the same decaying behavior as that of Wc∗ , i.e.,
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W ′
c∗ ∼ C⃗e−µ1(c∗)x as x → ∞ (2.29)

for some vector C⃗, where W ′
c∗ represents the first derivative of Wc∗(θ, x) with respect to x.

To omit this eigenvector v̄, we define a weighted space V as

V = {v ∈ C0 : ve
µ1(c)x = o(1) as x → ∞, }

where c = c∗ − δ. Therefore, it follows that the eigenvector v̄ = W ′
c∗ is not in V, which implies that

T−c∗M(Wc∗) has no eigenvalue λ = 1 in V. Since the operator T−c∗M(Wc∗) is compact and strongly

positive in V, we know that T−c∗M(Wc∗) − I has a bounded inverse in V, where I is the identity

operator. By the well-known inverse function theorem in the abstract space V, we conclude that

there exists a small positive number δ0 so that the problem (2.25) has a solution V for any δ ∈ [0, δ0).

Returning to (2.23), it follows that we have a solution Wc for c = c∗ − δ. The positivity of Wc can be

guaranteed by the choice of a sufficiently small δ. The proof is complete.

The above theorem presents the essential feature of the wavefront with the nonlinearly selected

minimal speed. For the technique of the above perturbation argument, we have assumed that M(Wc∗)

is strongly positive. Next we shall provide two easy-to-use theorems for the linear selection or the

nonlinear selection without this assumption.

Theorem 2.5 (Linear Selection). Let Q satisfy (A1)-(A6) with c∗ being its spreading speed and

M satisfy (M1)-(M6) with the linear speed c0 defined in (2.7). Further assume that there exists a

continuous and positive function U(θ, x) satisfying

lim inf
x→−∞

U(θ, x) ≫ 0, lim
x→∞

U(θ, x) = 0, (2.30)

and

Q(U) ≤ U(θ, x− c0). (2.31)

Then the linear selection is realized.

Proof. Recall from (2.3) that c∗ := sup{c : a(c; θ,+∞) = β} where

a(c; θ, s) = lim
n→∞

an(c; θ, s),

with a0(c; θ, s) = ϕ(θ, s), an+1(c; θ, s) = Rc[an(c; ·)](θ, s), see (2.1) and (2.2). Here c∗ is independent

of the choice of a0(c; θ,−∞) = α(θ), see [21, 38]. Therefore, we can let α(θ) be small so that the

upper solution U (a shift of U if required ) satisfies

a0(c0; θ, s) = ϕ ≤ U(θ, s) (2.32)

for all s ∈ (−∞,∞). From (2.1), (2.2), (2.30) and (2.31), by induction it follows that

an+1(c0; θ, s) ≤ U(θ, s), n ≥ 0

and a(c0; θ,∞) = 0. By (2.3), we have c∗ ≤ c0. From the fact that the operator Q is Fréchet-

differentiable at zero, it can be derived that c∗ ≥ c0 in terms of Theorem 3.10(ii) in [21] ( by replacing

M by M − δ for any small constant δ). Therefore, we arrive at c∗ = c0, and then the linear selection

is realized.
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Corollary 2.6. Let Q satisfy (A1)-(A6) with c∗ being its spreading speed and M satisfy (M1)-(M6)

with the linear speed c0 defined in (2.7). Suppose that U = e−µ̄xζµ̄(θ) is an upper solution of the wave

profile equation, i.e.,

Q
(
e−µ̄xζµ̄(θ)

)
≤ e−µ̄(x−c0)ζµ̄(θ), (2.33)

where µ̄ is defined in (2.7). Then the linear selection is realized.

Corollary 2.7. Let Q satisfy (A1)-(A6) with c∗ being its spreading speed and M satisfy (M1)-(M6)

with the linear speed c0 defined in (2.7). Suppose that U = β
1+ζµ̄(θ)eµ̄x

:= ( β1

1+ζ1µ̄(θ)e
µ̄x , · · · , βk

1+ζkµ̄(θ)e
µ̄x )

is an upper solution of the wave profile equation, i.e., Q(U) ≤ U(θ, x− c0). Then the linear selection

is realized.

Now we proceed to provide a sufficient condition for the nonlinear selection.

Theorem 2.8 (Nonlinear selection). Let Q satisfy (A1)-(A6) with c∗ being its spreading speed and

M satisfy (M1)-(M6) with the linear speed c0 defined in (2.7). For c1 > c0, suppose that there exists

a function V (θ, x) satisfying

0 ≪ V (θ, x) ≪ β, lim sup
x→−∞

V (θ, x) ≪ β, V (θ, x) = ζµ2(c1)(θ)e
−µ2(c1)x as x → ∞ (2.34)

and

Q(V (θ, x)) ≥ V (θ, x− c1), (2.35)

where µ2(c1) is defined in (2.8). Then c∗ ≥ c1 and NO traveling waves exist for c ∈ [c0, c1). In other

words, the nonlinear selection is realized.

Proof. To the contrary, first assume that for c ∈ (c0, c1) there exists a traveling waveW (θ, x) satisfying

Qn(W ) = W (·, x − nc). By (2.8), we understand that the asymptotic behavior of W at infinity is

either ∼ C1e
−µ1(c)x or ∼ C2e

−µ2(c)x for some positive vectors C1 and C2. Since µ1(c) is an decreasing

function and µ2(c) is a increasing function in c for c ≥ c0, we conclude (after a shift of the variable

x in W ) that W ≥ V holds. In view of the monotonicity, we have Qn(W ) ≥ Qn(V ). By (2.35), it

follows that

W (θ, x− nc) ≥ V (θ, x− nc1). (2.36)

Fix ξ1 = x− nc1 so that V (θ, x− nc1) = V (θ, ξ1) ≫ 0. However,

W (θ, x− cn) = W (θ, ξ1 + (c1 − c)n) ∼ W (θ,∞) = 0 as n → ∞.

By the comparison in (2.36), it implies a contradiction. Therefore, no traveling waves exist for

c ∈ (c0, c1), which also implies that there is no traveling wave for c = c0 by Lemma 2.2. Hence, the

statement of the theorem is true. The proof is complete.

Corollary 2.9. Let Q satisfy (A1)-(A6) with c∗ being its spreading speed and M satisfy (M1)-(M6)

with the linear speed c0 defined in (2.7). Assume that V = β
1+ζµ̄(θ)eµ̄x

is a strongly-strict lower solution

of the wave profile equation, i.e.,

Q(V ) ≫ V (θ, x− c0).

Then nonlinear selection is realized.
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Proof. By the continuity, it is easy to see there exists a constant number c1 sufficiently close to c0
and a vector β0 sufficiently close to β so that V = β0

1+ζµ2(c1)
(θ)eµ2(c1)x

is a lower solution. Hence, the

result directly follows from Theorem 2.8.

Now we directly extend the above results to time-continuous semiflow. Let Qt satisfy all the

assumptions (A1)-(A6) and Mt, satisfying (M1)-(M6), be the linearization of Qt at zero in the sense

of (1.9). Denote Q = Q1 and M = M1. Let c
∗ be the spreading speed of Q and c0 be the linear speed

of M defined by (2.7). Similarly, we have the following results.

Theorem 2.10 (Linear Selection). Assume that there exists a function U(θ, x) ≥ 0 satisfying

lim inf
x→−∞

U(θ, x) ≫ 0, lim
x→∞

U(θ, x) = 0

and

Qt(U) ≤ U(θ, x− c0t). (2.37)

Then the linear selection is realized.

Corollary 2.11. Suppose that U = e−µ̄xζµ̄(θ) is an upper solution of the wave profile equation

Qt(U) = U(θ, x− c0t), i.e.,

Qt

(
e−µ̄xζµ̄(θ)

)
≤ e−µ̄(x−c0t)ζµ̄(θ). (2.38)

Then the linear selection is realized.

Corollary 2.12. Suppose that U = β
1+ζµ̄(θ)eµ̄x

is an upper solution of the wave profile equation, i.e.,

Qt(U) ≤ U(θ, x− c0t). Then the linear selection is realized.

Theorem 2.13 (Nonlinear selection). For c1 > c0, if there exists a function V (θ, x) satisfying

0 ≪ V (θ, x) ≪ β, lim sup
x→−∞

V (θ, x) ≪ β, V (θ, x) = ζµ2(c1)(θ)e
−µ2(c1)x as x → ∞ (2.39)

and

Qt(V (θ, x)) ≥ V (θ, x− c1t), (2.40)

then c∗ ≥ c1 and NO traveling wave exists for c ∈ [c0, c1). In other words, the nonlinear selection is

realized.

Corollary 2.14. Assume that V = β
1+ζµ̄(θ)eµ̄x

is a strongly-strict lower solution of the wave profile

equation, i.e.,

Qt(V ) ≫ V (θ, x− c0t).

Then the nonlinear selection is realized.
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3 Application to delayed reaction-diffusion equations

3.1 A reaction-diffusion equation with discrete delay

Consider a time-delayed reaction-diffusion equation

ut(t, x) = uxx(t, x) + f(u(t, x), u(t− τ, x)), (3.1)

where τ > 0 and f satisfies

f(r, s) ≥ 0, ∂f2(r, s) ≥ 0, for 0 ≤ r, s ≤ 1, (3.2)

f(0, 0) = f(1, 1) = 0, f(r, r) > 0 for 0 < r < 1, (3.3)

and

∂f1(0, 0) + ∂f2(0, 0) > 0. (3.4)

This system was originally studied by Schaaf in [35] where asymptotical behavior and traveling wave

solutions for a general KPP or a bistable nonlinear system were investigated.

To apply our results, we first verify that all the conditions (A1)-(A6), (M1)-(M6) are satisfied.

Indeed, (3.1) is a special form of (5.2) in [21]. Under the conditions (3.2)-(3.4), we can see from

section 5.1 in [21] that all the conditions are satisfied. In particular, the linear operator M is strongly

positive due to the property of the heat kernel.

Based on the monotonicity of system (3.1), by the main result in [21], it follows that there exists a

constant cmin such that for c ≥ cmin, (3.1) has a traveling wave solution u(t, x) = U(x− ct) satisfying

U ′′ + cU ′ + f(U,U(z + cτ)) = 0, (3.5)

and

U(+∞) = 1, U(−∞) = 0. (3.6)

However, no information on cmin was mentioned if the nonlinear function f is not dominated by its

linear part.

To further understand the mechanism of the speed selection on the minimal speed, we linearize

(3.5) at zero solution to get

U ′′ + cU ′ +AU +BU(z + cτ) = 0, A = ∂f1(0, 0), B = ∂f2(0, 0). (3.7)

Then the linear speed c0 is determined by

c0 := inf{c : h(µ) = µ2 − cµ+A+Be−µcτ = 0 has a positive real solution}. (3.8)

It is known that h(µ) has two positive zero points µ1(c) and µ2(c), with µ1(c) < µ2(c), if c > c0.

When c = c0, h(µ) has a unique positive zero point µ̄ so that µ1(c) = µ2(c) = µ̄.

Now we want to obtain a linear selection mechanism of the minimal wave speed of (3.1) by applying

Theorem 2.10.
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Theorem 3.1. Let U(z) = 1
1+eµ̄z . If

−2µ̄2 +
f(U,U(z + c0τ))−AU(1− U)−Be−µ̄c0τU(1− U)

U2(1− U)
≤ 0, (3.9)

then the linear selection of the minimal wave speed of (3.1) is realized.

Proof. Making use of the fact that

U ′ = −µ̄U(1− U), U ′′ = µ̄2U(1− U)(1− 2U), (3.10)

at c = c0 we obtain

U
′′
+ c0U

′
+ f(U,U(z + c0τ))

= µ̄2U(1− U)(1− 2U)− µ̄U(1− U) + f(U,U(z + c0τ))

= U2(1− U)
(
− 2µ̄2 + f(U,U(z+c0τ))−AU(1−U)−Be−µ̄c0τU(1−U)

U2(1−U)

)
.

(3.11)

From (3.9), it follows that U is an upper solution of (3.5). Thus ut(θ, x) = u(t+θ, x) = U(x−c0(t+θ))

becomes an upper solution of the original equation (3.1) with initial condition u(θ, x) = U(x− c0θ).

Let

Qt(ϕ)(θ, x) = ut(θ, x, ϕ)

be the solution semi-flow of (3.1). Qt(U) is the solution of (3.1) with ϕ = U(x − c0θ). By the

comparison principle, this gives that for t > 0,

Qt(U) ≤ U(x− c0(t+ θ)).

Therefore, (2.37) in Theorem 2.10 is satisfied. By Theorem 2.10, the desired result follows.

Remark 3.1. In the above proof, we show that the upper solution of the wave profile equation (3.5)

always implies the existence of the upper solution of the solution semiflow in (2.37). This fact is also

true for lower solutions. Later, for convenience, we will directly work on the finding of the upper

solution/lower solutions of the wave profile equation, instead of on the finding of those solutions in

(2.37) or (2.40) in terms of the semiflow.

Remark 3.2. When c = c0, the function U = e−µ̄z is an upper solution of (3.5) provided that

f(u, u(t− τ, x)) ≤ f1(0, 0)u+ f2(0, 0)u(t− τ, x), for u ≥ 0, u(t− τ, x) ≥ 0, (3.12)

holds. By Theorem 2.10, the linear selection is realized. In other words, when f is dominated by its

linear part, the linear selection is realized.

By Theorem 2.13, we can obtain the nonlinear selection mechanism of the minimal wave speed of

(3.1).

Theorem 3.2. Assume U = 1
1+eµ2(c1)z

and

−2µ2
2(c1) + min

z∈(−∞,+∞)

f(U,U(z + c1τ))−AU(1− U)−Be−µ2(c1)c1τU(1− U)

U2(1− U)
> 0

for some c1 > c0. Then the nonlinear selection of the minimal wave speed of (3.1) is realized.

Furthermore, there exist no traveling waves for c ∈ [c0, c1).
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Obviously, the delayed Hadeler and Rothe model

ut = uxx + u(t− τ, x)(1− u(t, x))(1 + au(t, x)), a ∈ [0,∞) (3.13)

is a particular form of (3.1). We now apply Theorems 3.1 and 3.2 to obtain its linear and nonlinear

selection results of the minimal wave speed.

For U = 1
1+eµz , note that

eµcτ − 1

e2µcτ
U2 ≤ U(z + cτ)− e−µcτU ≤ eµcτ − 1

eµcτ
U2.

By using Theorems 3.1 and 3.2, we know that if the following condition

−2µ̄2 + 2a+
eµ̄c0τ − 1

eµ̄c0τ
≤ 0, i.e., a ≤ µ̄2 − eµ̄c0τ − 1

2eµ̄c0τ

is satisfied, then the linear selection of the minimal wave speed is realized. Similarly, we can obtain

that the nonlinear selection is realized if a > µ̄2 − eµ̄c0τ−1
2e2µ̄c0τ

.

Since the system is monotonic in a in the sense that if the linear selection is realized for the system

(3.13) when a = aβ, then the linear selection is realized for all a ≤ aβ, we can have a threshold value

a = ac so that the following theorem is true.

Theorem 3.3. There exists a critical value ac such that the minimal wave speed of (3.13) is linearly

selected for a ≤ ac and nonlinearly selected for a > ac. Furthermore, we have the estimate

µ̄2 − eµ̄c0τ − 1

2eµ̄c0τ
≤ ac ≤ µ̄2 − eµ̄c0τ − 1

2e2µ̄c0τ
.

Remark 3.3. We now find that Theorem 2.7 in [35] is misleading with a statement that the minimal

speed is always linearly selected for its model. Indeed, when the nonlinearity term f(w(t, x), w(t−τ, x))

in (2.1) of [35] is taken as w(t−τ, x)(1−w(t, x))(1+aw(t, x)), a ∈ [0,∞), all the conditions in section

2.1 of [35] are satisfied. Theorem 2.7 claimed that the minimal speed is always equal to the linear

speed for all a. However, this is not true in view of our Theorem 3.3.

3.2 A reaction-diffusion system with a distributed delay

Consider a nonlocal reaction diffusion model

ut = Duxx − d1u+ e−
∫ τ
0 d2(a)da

∫ +∞

−∞
f(x− y)b(u(t− τ, y))dy, τ > 0, (3.14)

where f(x) = 1√
4πα

e−
x2

4α and we set k = e−
∫ τ
0 d2(a)da. As an illustration, we assume that d1u = kb(u)

has two non-negative zeros u1 = 0, u2 = K > 0 and b′(η) ≥ 0 for η ∈ [0,K]. The applications of this

model can be seen in [26,28,29] and references therein.

This is a special model of (5.3) in [21]. Therefore, all the conditions (A1)-(A6) and (M1)-(M6)

are satisfied.

To study the traveling wave solutions, we let u(t, x) = U(z), z = x− ct. Then, by (3.14), we have

the following equation for U

DU
′′
+ cU

′ − dU + k
∫ +∞
−∞ f(z − s)b(U(s+ cτ))ds = 0,

U(−∞) = K, U(+∞) = 0.
(3.15)
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Furthermore, in view of the linearized system around the equilibrium 0, we define

h(µ) = Dµ2 + cµ− d+ kb′(0)e−µcτ+αµ2
.

Then, the linear speed c0 is determined by

c0 := inf{c : h(µ) has a positive zero point}. (3.16)

Similarly, it is easily known that for c > c0, h(µ) has two positive zeros denoted by µ1(c) and µ2(c)

with µ1(c) < µ2(c). When c = c0, we have µ1(c0) = µ2(c0) and we set µ = µ1(c0) = µ2(c0).

Taking U = K
1+eµz , at µ = µ we have

U ′ = −µ̄U(1− U

K
) and U ′′ = µ̄2(1− 2U

K
)U(1− U

K
).

Thus, by (3.15), we have

DU
′′
+ cU

′ − dU + k

∫ +∞

−∞
f(z − s)b(U(s+ cτ))ds = (1− U

K
)
U2

K
Φ(µ̄, z), (3.17)

where

Φ(µ̄, z) = −2Dµ̄2

+ k
U(1− U

K
) U
K

∫ +∞
−∞ f(s)

[
b(U(z − s+ cτ)− d

KU2(z))− b′(0)e−µ̄(−s+cτ)U(z)(1− U(z)
K )

]
ds.

Then by applying Theorems 2.10 and 2.13, we have the following result.

Theorem 3.4. If Φ(µ, z) ≤ 0 for z ∈ (−∞+∞), then the linear selection of the minimal wave speed

for (3.14) is realized. If Φ(µ2(c1), z) > 0, z ∈ (−∞ +∞) for some c1 > c0, then the minimal wave

speed for (3.14) is nonlinearly selected.

4 Application to discrete systems

4.1 A lattice system

Consider a lattice system

x′i(t) = d(xi−1 − 2xi + xi+1) + f(xi), i = 0,±1,±2, · · · , (4.1)

where f is a differentiable function satisfying f(0) = f(1) = 0, f(u) > 0 for u ∈ (0, 1) and f ′(0) > 0.

This system can be also thought as a space-discretized Fisher-KPP equation.

Due to the lack of compactness of the solution semiflow of (4.1), we first consider the followed

perturbed model

x′i(t) = d(xi−1 − 2xi + xi+1) + f(xi) +
ϵ

2π

∞∑
k=−∞

βα(i− k)f(xi), i = 0,±1,±2, · · · , (4.2)
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where

βα(l) = 2e−v

∫ π

0
cos(lw)ev coswdw, (4.3)

ϵ is small and v = 2α. This is a similar model of (5.7) in [21]. Following the same argument as in

Proposition 5.2 of [21], we can verify that the semi-flow Qϵ
t satisfies all the condition of (A1)-(A6) and

(M1)-(M6). In particular, the solution semi-flow Qϵ
t is also continuous in ϵ with the speeds cϵmin and

cϵ0 to be uniformly bounded for ϵ ∈ [0, 1]. By way of limiting argument coupled with the dominated

convergence theorem, it can be easy to verify

lim
ϵ→0

cϵmin = cmin, and lim
ϵ→0

cϵ0 = c0,

where cmin is the minimal speed of traveling waves of the model (4.1) and c0 is the linear speed of it.

All the results in our theorem hold when we put ϵ → 0.

To be exact, for a traveling wave of (4.1), we set xi = U(z), z = i− ct; then it follows from (4.1)

that

d [U(z − 1)− 2U(z) + U(z + 1)] + cU ′ + f(U) = 0 (4.4)

subject to

U(−∞) = 1, U(+∞) = 0.

The linearized system of (4.4) at 0 gives a characteristic equation as

d(eµ − 2 + e−µ)− cµ+ f ′(0) = 0. (4.5)

Let

F (µ) = d(eµ − 2 + e−µ)− cµ+ f ′(0).

It is easy to see that

F (0) = f ′(0) > 0, F ′′(µ) > 0

and

F ′(µ) = d(eµ − e−µ)− c.

The linear speed c0 is determined by the system of F (µ) = 0 and F ′(µ) = 0. Indeed, there exist

c0 and µ̄ so that F (µ̄) = 0 for c = c0; for c > c0, there exist two positive zeros µ1(c) and µ2(c),

µ1(c) < µ2(c), satisfying F (µ1) = F (µ2) = 0. When c = c0, it also follows that µ1(c) = µ2(c) = µ̄.

Assume cmin is the minimal speed for (4.4). Similarly as before, the function U = e−µ̄z is an upper

solution of (4.4), if f(x) ≤ f ′(0)x, x ≥ 0. Thus, we have cmin = c0. This is the conventional result on

the linear selection.

To have a better and sharp result, now we choose U = 1
1+eµz , where µ satisfies F (µ) = 0. In view

of U ′ = −µU(1− U), we get

d(U(z − 1)− 2U(z) + U(z + 1))) + cU ′ + f(U)

= dU2(1− U)
{

U(z−1)−2U(z)+U(z+1)
U2(1−U)

− (eµ−2+e−µ)
U + f(U)−f ′(0)U(1−U)

dU2(1−U)

}
.

(4.6)

Set

G(z) = −
[
U(z − 1)− 2U(z) + U(z + 1)

U2(1− U)
− (eµ̄ − 2 + e−µ̄)

U

]
,
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where U = 1
1+eµ̄z . Assume m1 and m2 are the minimal and maximal values of G(z) in the interval

(−∞,∞), i.e.,

m1 = min
z∈(−∞,∞)

G(z), m2 = max
z∈(−∞,∞)

G(z). (4.7)

By Corollaries 2.11 and 2.14, we have the following theorem.

Theorem 4.1. The minimal wave speed of the lattice system (4.4) is linearly realized provided that

f(U)− f ′(0)U(1− U)

(1− U)U2
≤ dm1, U ∈ (0, 1).

On the other side, the minimal wave speed of (4.4) is nonlinearly realized provided that

f(U)− f ′(0)U(1− U)

(1− U)U2
> dm2, U ∈ (0, 1).

4.2 A scalar Integro-difference equation

We consider an integro-difference equation

un+1(x) =

∫
R
f(un(y))k(x− y)dy, x ∈ R, n ≥ 0, (4.8)

where u0(x) is a bounded and continuous function from R to R. k(x) is a positive Lebesque measurable

function satisfying
∫
R k(y)dy = 1 and

∫
R eµyk(y)dy < ∞ for positive constant µ. For the application

of this model, see [16]. Here we assume that u = f(u) has two fixed point u = 0 and u = K, and that

f(u) is positive and monotonic for u ∈ (0,K). The kernel function k is assumed to satisfy

lim
s→0

∫ ∞

−∞
|k(x+ s)− k(x)|dx = 0

which implies that solution semi-flow Q[u] defined by (4.8) is equi-continuous. Based on the mono-

tonicity of f , it is straightforward to verify that all the conditions of (A1)-(A6) and (M1)-(M6) are

satisfied and we omit the details here. Therefore, it is known that there exists a constant cmin such

that for c ≥ cmin, the equation (4.8) has a traveling wave solution u(n, x) = U(x−cn) where U satisfies

U(x− c(n+ 1)) =

∫
R
f(U(y − cn))k(x− y)dy, x− cn = z (4.9)

or
U(z − c) =

∫
R f(U(y))k(z − y)dy =

∫
R f(U(z − y))k(y)dy,

U(−∞) = K, U(+∞) = 0.
(4.10)

Let z − c = s. We can also get

U(s) =

∫
R
f(U(y))k(s+ c− y)dy. (4.11)

For the derivation of the linear speed, we may replace the above formula by inserting f(U) = f ′(0)U

and work out the characteristic equation as

F (µ) =

∫
R
f ′(0)eµ(y−c)k(y)dy − 1 = 0. (4.12)
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Assume that

F (0) =

∫
R
f ′(0)k(y)dy − 1 = f ′(0)− 1 > 0.

It is easy to derive that there exists a constant c = c0 so that the equation (4.12) has two positive

solutions µ1(c) and µ2(c) (we might as well set µ1 < µ2) for c > c0, one solution µ̄ = µ1(c0) = µ2(c0)

for c = c0 and no real solution for c < c0. Indeed, the constant c0 can be determined by the system

F (µ) = 0 and F ′(µ) = 0.

Now we concentrate on the speed selection for the nonlinear equation (4.10). Similarly as before,

it is easy to have the linear selection if f(u) ≤ f ′(0)u, u ∈ (0, 1). To improve this result, we choose a

testing function as U = K
1+eµz . Then we have∫

R f(U(y))k(z − y)dy − U(z − c)

=
∫
R f( K

1+eµ(y) )k(z − y)dy − K
1+eµ(z−c)

=
∫
R [f( K

1+eµ(y) )− K
1+eµ(z−c) ]k(z − y)dy

=
∫
R [f ′(0) K

1+eµ(y)
− K

1+eµ(z−c) ]k(z − y)dy +
∫
R [f( K

1+eµ(y)
)− f ′(0) K

1+eµ(z−y) ]k(z − y)dy.

(4.13)

Using (4.12), the first term can be estimated as∫
R [f ′(0) K

1+eµy − K
1+eµ(z−c) ]k(z − y)dy

= −K
∫
R

f ′(0)e−2µy

e−µy+1
k(z − y)dy +K

∫
R

e−2µ(z−c)

e−µ(z−c)+1
k(z − y)dy.

(4.14)

Therefore, we have ∫
R
f(U)k(z − y)dy − U(z − c) = Ψ(µ, z), (4.15)

where

Ψ(µ, z)

= K
∫
R [ e−2µ(z−c)

e−µ(z−c)+1
− f ′(0)e−2µy

e−µy+1
]k(z − y)dy +

∫
R [f( K

1+eµy )− f ′(0) K
1+eµy ]k(z − y)dy.

Therefore, the application of Corollaries 2.7 and 2.9 leads to the following theorem.

Theorem 4.2. The following statements are true: (1) If Ψ(µ, z) ≤ 0 for z ∈ (−∞,∞), then the

minimal wave speed for (4.8) is linearly selective. (2) If Ψ(µ, z) > 0 for z ∈ (−∞,∞), then the

minimal wave speed for (4.8) is nonlinearly selective.

5 Application to a cooperative system

Our previous applications are all on scalar equations. In this section, we demonstrate our application

to a monotonic coupled system with two equilibria.

Consider the following cooperative system{
ut = uxx + u(1− u) + auv(1− u),

vt = dvxx + r(u− v),
(5.1)
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where u and v represent population density of two species, or two stages of one species, a, d, r are

positive constants. It is easy to verify that all the conditions (A1)-(A6) and (M1)-(M6) are satisfied

when d ≤ 1, see also section 4 in [39]. As in [39], by substituting u = α1e
−µx, v = α2e

−µx into the

right-hand side of the linearization of (5.1) at zero and setting x = 0, we can define a matrix Cµ as

Cµ =

(
µ2 + 1 0

r dµ2 − r

)
. (5.2)

This gives Bµ = eCµ . Thus the principal eigenvalue of Bµ becomes eµ
2+1 and the relation between c

and µ is given by

c =
µ2 + 1

µ
. (5.3)

Therefore, the linear speed is c0 = 2 with µ̄ = 1. When c > c0, equation (5.3) has two solutions

µ1(c) =
c−

√
c2 − 4

2
, and µ2(c) =

c+
√
c2 − 4

2
. (5.4)

By a traveling wavefront to (5.1), we mean a special solution u(t, x) = U(z), v(t, x) = V (z),

z = x− ct , where c is the wave speed. After substitution, we obtain the wave profile equation given

by {
U ′′ + cU ′ + U(1− U) + aUV (1− U) = 0,

dV ′′ + cU ′ + r(U − V ) = 0.
(5.5)

To obtain the speed selection, we want to find suitable upper/lower solutions for the wave profile

system (5.5). To proceed, we have the following theorem.

Theorem 5.1. Assume that d ≤ 1. The minimal speed of traveling wavefronts to (5.1) is linearly

selected if a < 2, and non-linearly selected if

2

a
<

r

r + d+ 2
. (5.6)

Proof. For c = c0 = 2, we first construct the upper solution as

Ū(z) =
1

1 + ez
, and V̄ (z) = Ū(z). (5.7)

By a straightforward calculation with the use of Ū ′(z) = −Ū(1−Ū) and Ū ′′(z) = Ū(1−Ū)(1−2Ū(z)),

we can verify that (5.7) is an upper solution of (5.5) if a < 2.

On the other hand, for c = c0 + ε, where ε is a small positive number, set a lower solution as

U(z) =
1

1 + eµ2(c)z
, and V (z) = kU(z) (5.8)

where k is a constant satisfying
2

a
< k <

r

r + d+ 2
. (5.9)

Again using the fact that U ′(z) = −µ2(c)U(1−U), we can verify that (5.8) is a lower solution to the

wavefront profile (5.5) under the condition (5.9), as long as ε is sufficiently small.

Thus, by applying Theorem 2.5 and Theorem 2.8, we obatin our result. The proof is complete.
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Remark 5.1. When d > 1, the spreading speed of this model is well defined. However, the matrix Cµ

(also Bµ) has no strongly positive eigenvector for some µ. Alternatively we still can follow the idea

of Remark 2.3 to define the linear speed c0 by the first block of Cµ. The speed selection problem could

in principle be similarly studied. This will leave to interested readers.

6 Conclusion and discussion

In this work, we investigate the selection mechanism of the minimal wave speed for traveling waves

to an abstract monotone semiflow. We successfully improve the known conventional results on the

linear selection and make a breakthrough at the study of nonlinear selection. A necessary and

sufficient condition for the nonlinear selection of the minimal wave speed is established. Using it as a

milestone, we derive explicit conditions for the realization of linear or nonlinear selection by applying

the comparison principle. Our results on nonlinear selection are new and novel, and for the linear

selection, we improve the condition that the monotone semiflow is dominated by its linear map.

We also apply our results to some classical biological models including reaction-diffusion models

with delay interactions, a lattice system, a scalar integro-difference equation and a cooperative system.

Compared with the references, a series of new results are obtained. Definitely, the idea, method and

results should in principle be easily extended and applied to various biological systems that model

the spread of infectious diseases such as Lyme and Malaria, see [22] and [40].

We should mention that in our paper, we assume that there are only two fixed points 0 and β for

the map Q. This is not essential in our method and idea, and it can be interestingly and non-trivially

developed to study the case when the map Q admits more than two fixed points with at least one or

more fixed points on the boundary of the positive cone. In this case, due to the existence of other

equilibria, say αi, i = 1, 2, · · · , n, between 0 and β, the classical upper/lower solution defined in Cβ
cannot guarantee the existence of traveling wave front with the connection just on 0 and β. In other

words, we also need to figure out all possible connections between 0 and αi, αi and αj , i, j = 1, 2, · · · , n,
and between αi and β. Even for the spreading speed, we have the following definitions

c∗ := sup{c : a(c; ·,+∞) = β} and c∗+ := sup{c : a(c; ·,+∞) ̸= 0} (6.1)

with c∗+ ≥ c∗, see the reference [39]. If c∗+ = c∗, the system is called with a single speed.

For example, let us consider the well-known Lotka-Volterra model{
ut = uxx + u(1− a1 − u+ a1v),

vt = dvxx + r(1− v)(a2u− v),
(6.2)

where a1, a2 and d are positive constants. Under the condition

0 < a1 < 1 < a2, (6.3)

the system (6.2) has three equilibrium solutions e0 := (0, 0), e1 := (1, 1), and e2 := (0, 1). Researchers

are interested in the existence of traveling waves

(u, v)(t, x) = (U, V )(z), z = x− ct
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connecting e1 and e0. In other words, one is particularly concerned with the existence of U(z) and

V (z) that satisfy {
U ′′ + cU ′ + U(1− a1 − U + a1V ) = 0,

dV ′′ + cV ′ + r(1− V )(a2U − V ) = 0
(6.4)

subject to

(U, V )(−∞) = e1, (U, V )(∞) = e0. (6.5)

The linear speed of this model is given by

c0 = 2
√
1− a1,

see [13]. Let cmin be the minimal speed so that (6.4)-(6.5) has a solution. Based on his numerical

simulations, in 1998, Hosono raised the following conjecture.

Conjecture 6.1. If a1a2 ≤ 1, then cmin = c0 for all r > 0. If a1a2 > 1, then there exits a positive

number rc such that cmin = c0 for 0 < r ≤ rc, and cmin > c0 for r > rc.

This conjecture remains outstanding since 1998, except that some partial results were provided

in [19] and [14, 15], see also [9, 10, 12]. In [9], the authors addressed Conjecture 4 of Hosono [13] by

way of upper/lower solutions coupled with geometric singular perturbation arguments. It gave an

example of a pushed front which invades slower than the linearized dynamics predict. In [10], Holzer

and Scheel rigorously derived the linear spreading speed c0. The reference [12] demonstrated how

coupling may or may not increase the invasion speed of one of the components of the reaction diffusion

systems. We will develop our method to work on the Hosono’s conjecture in a separate paper.

Similarly as in above discussion, the method in this work could also be developed to study the

multi-stage invasion, see e.g., [11, 30] and recent work of Bayliss and Volpert [36].

In the derivation of the spreading speed in our paper by following the idea of [23] and [37], the

initial data are assumed to be non-increasing and have a compact support near infinity. It will be

interesting to study the invasion speed dependence/convergence on the decay behavior of the initial

data. For instance, for the classical one-dimensional reaction diffusion equation

ut = duxx + f(u), (6.6)

where d > 0, f(0) = f(1) = 0, there have been some studies in this direction. In the KPP-Fisher case

when d = 1 and f(u) = u(1 − u), the minimal speed is linearly selected with c∗ = c0 = 2. Consider

the initial data as

u(0, x) = Ae−ax, (6.7)

where a > 0 and A > 0. For d = 1, the asymptotic speed c (or spreading speed) of (6.6) is given by

c = a+
1

a
, 0 < a < 1; c = 2, a ≥ 1, (6.8)

see e.g. the analysis in [27] and the proof in [25] and [18]. In the case when the nonlinear selection is

realized, the situation is a bit different. In [31], Rothe studied the convergence to the traveling wave

with the minimal speed to be nonlinearly selective. His result showed that if the initial data has the
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above behavior (6.7), the solution u(x, t) will stabilize exponentially to the traveling wave with the

minimal speed c = c∗ if

a > µ2(c
∗) =

c∗ +
√

(c∗)2 − 4

2
.

No result was shown in [31] if a ≤ µ2(c
∗). For both above results (in the linear and nonlinear

selection cases), it will be extremely interesting to make an extension study to our abstract map Q.

Alternatively, for d = 1
2 and the KPP nonlinearity f(u) = u(1−u) in (6.6) with a step initial function,

Bramson in [6] studied the asymptotic formula of the level set Xϵ(t) with a nice result

Xϵ(t) = 2
1
2 t− 3 · 2−

3
2 log t+O(1),

where Xϵ(t) is defined by u(t,Xϵ(t)) = ϵ. We wonder if this result can be extended to our abstract

model and it will be part of our future study.

Finally, it is also of particular interest to extend the present study to general cases such as periodic

monotone semiflow, semiflow with periodic habitat, semiflow with weak compactness and semiflow

with unbounded delay or distributed delay, by using tools similar to the ones proposed herein. Efforts

along these directions are currently in progress and will be presented in future publications.
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