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Abstract
This paper concerns ecological invasion phenomenon of species based on the diffusive
Lotka–Volterra competitionmodel.We investigate the spreading speed (or theminimal
wave speedof travelingwaves) selection to themodel and concentrate on the conjecture
raised by Roques et al. (J Math Biol 71(2):465–489, 2015). By using an abstract
implicit function theorem in a weighted functional space coupled with a perturbation
technique, we not only prove this conjecture, but also show that the fast decay behavior
of the first species is necessary and sufficient for the nonlinear speed selection of the
whole system. This may lead to further significant results on the answer to the original
Hosono’s conjecture, a problem that has been outstanding for more than twenty years.
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1 Introduction

Biodiversity of a specific ecosystem creates a competitive scene of different species.
Growth of competitive species can be studied based on the characteristics of com-
petition strength (Kolar and Lodge 2001; Lonsdale 1999), environmental resources
(Sher and Hyatt 1999), or by considering these factors together (Shea and Chesson
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2002). Ecological competition also appears evidently in biological invasions. Inter-
action between invasive and resident species leads to ecological equilibrium so that
they can coexist or only one of them wins the competition and survives (Amarasekare
2003; Tang and Fife 1980). Indeed, species dispersal has a significant impact to the
population growth in competition so that when populations spread they encounter
others (Mack et al. 2000). Mathematically, logistic equation describes the population
growth of a single species. By including interspecific competition and the dispersal
factors, invasion spreading and its speed can be described by traveling wave solutions
of the diffusive Lotka–Volterra competition model,

φt = d1φxx + r1φ

(
1 − φ

k1
− l1ψ

)
,

ψt = d2ψxx + r2ψ

(
1 − l2φ − ψ

k2

)
,

(1.1)

subjected to φ(x, 0) = φ0(x) and ψ(x, 0) = ψ0(x). Here φ(x, t) and ψ(x, t) are the
population densities at time t and location x ; d1 and d2 are the diffusion coefficients;
r1 and r2 are the net birth rates; l1 and l2 are the competition coefficients; k1 and
k2 are the carrying capacities which include the intraspecific competition. Based on
this model, Okubo et al. (1989) successfully studied the dynamics of the externally
introduced gray squirrels and the indigenous red squirrels in Britain.

By letting

d = d1
d2

, r = r2
r1

, a1 = l1k2, a2 = l2k1,

u(x, t) = φ(x, t)

k1
, and v(x, t) = 1 − ψ(x, t)

k2
,

the time-space transformation

√
r1/d1 x → x and r1t → t

leads to a cooperative system

ut = uxx + u(1 − a1 − u + a1v),

vt = dvxx + r(1 − v)(a2u − v),
(1.2)

subjected to u(x, 0) = u0(x) and v(x, 0) = v0(x). In this work, we assume that the
invasive species φ outcompetes the resident ψ , that is, the condition

0 ≤ a1 < 1 < a2 (1.3)

is satisfied. Under this condition, equilibria of the system (1.2) inside [0, 1] × [0, 1]
are only (0, 0), (0, 1), and (1, 1). In the absence of diffusion, standard linear stability
analysis implies that (1, 1) is stable and (0, 0) is unstable (see e.g. Kan-on 1997). Back
to the original system, the state (0, k2), which corresponds to (u, v) = (0, 0), means
that only species ψ is present with the value of its carrying capacity. If it is invaded by
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species with density φ, then it will be excluded to the state (k1, 0), which corresponds
to (u, v) = (1, 1).

Biologically, competitive exclusion and spatial dispersal result in a wave propaga-
tion phenomenon. To describe the spreading of the invasive species into the resident
one, we consider traveling wave solutions of (1.2) in the form

(u, v)(x, t) = (U , V )(z), z = x − ct,

which connects (1, 1) and (0, 0), for some constant c ≥ 0 that is called the wave
speed. Indeed, the system satisfied by (U , V ) reads

U ′′ + cU ′ +U (1 − a1 −U + a1V ) = 0,

dV ′′ + cV ′ + r(1 − V )(a2U − V ) = 0,

(U , V )(−∞) = (1, 1), (U , V )(∞) = (0, 0).

(1.4)

For the behavior of the wave profile of the nonlinear system (1.4) near the equilibrium
point (0, 0), by linearizing the system around (0, 0), we get the following system

U ′′ + cU ′ +U (1 − a1) = 0,

dV ′′ + cV ′ + r(a2U − V ) = 0,
(1.5)

where the first equation is de-coupled from the system. Since we require thatU tends
to zero as z → ∞, obviously the solution U has the behavior

U (z) ∼ C1e
−μ1(c)z, as z → ∞, (1.6)

or

U (z) ∼ C2e
−μ2(c)z, as z → ∞, (1.7)

with positive constants C1 and C2, where μ1 and μ2 are given by

μ1(c) = c − √
c2 − 4(1 − a1)

2
, μ2(c) = c + √

c2 − 4(1 − a1)

2
(1.8)

for c > c0 = 2
√
1 − a1. Here, μ1 and μ2 are real and monotonic in c with μ1(c) <

μ2(c). For more details we refer readers to Appendix A of (Alhasanat and Ou 2019a).
A similar behavior was also derived by Okubo et al. (1989) and Roques et al. (2015).

Define

c∗ = inf{c : (1.4) has a positive monotone solution}.

Results of (Kan-on 1997; Liang and Zhao 2007; Li et al. 2005; Volpert et al.
1994) imply the existence of c∗ > 0. The value of c∗ is equal to the asymptotic
spreading speed which describes how the invasive species spread into the resident
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species (Roques et al. 2015). By a standard linearization of the system about (0, 0),
we can show that c∗ ≥ c0 = 2

√
1 − a1, where c0 is the minimal wave speed of the

linearized system. If c∗ = c0, then we say that the minimal wave speed is linearly
selected, and the wavefront with this speed is called a pulled front; if c∗ > c0, then
the minimal wave speed is nonlinearly selected and the wavefront with the speed c∗
is called a pushed front.

The speed selection problem of the system (1.4), under the condition (1.3), is widely
investigated. While many sufficient conditions on the parameters for both linear and
nonlinear selections are established (Alhasanat andOu 2019b, a; Hosono 1998; Hozler
and Scheel 2012; Huang and Han 2011; Huang 2010; Lewis et al. 2002), the so-called
Hosono conjecture raised by Hosono (1998) has remained unsolved.

To further study this problem, based on numerical computations, recently Roques
et al. (2015) raised another important conjecture for the key feature of wave front U
in terms of its decay behavior in the case of nonlinear speed selection.

Conjecture 1 (Conjecture 1 of (Roques et al. 2015)) For d, r > 0, assume that the
minimal wave speed of the system (1.4), under the condition (1.3), is nonlinearly
selected and (U∗, V ∗)(z) is the solution of the system with the minimal speed c∗.
Then, u(t, x) = U (x − c∗t) is a fast decay wave, i.e., U (z) decays to 0 at the rate

U (z) ∼ Ce−μ2(c∗)z, as z → ∞, z = x − c∗t,

where C is a positive constant and

μ2(c
∗) = c∗ + √

(c∗)2 − 4(1 − a1)

2
.

This conjecture claims that the pushed wavefront U decays at infinity in a fast
manner e−μ2(c∗)z instead of the slow convergence rate e−μ1(c∗)z that seems to be taken
for all waves with speed c > c0. Some related facts were discussed by Roques et al.
(2015) based on the validity of the result in this conjecture. As far as we know, there
has been no rigourous proof on it. In the present paper, we work on this conjecture. By
way of an abstract implicit function theorem in a weighted functional space coupled
with a perturbation technique, this conjecture is successfully proved, andwe also show
that the fast decay behavior of the pushed wavefront U is necessary and sufficient for
the nonlinear speed selection. This will help to further develop significant results on a
possible answer to the original Hosono conjecture, a problem that has been outstanding
for more than twenty years.

The rest of the paper is organized as follows. In Sect. 2, we present and prove our
main results, the necessity and sufficiency of the condition in Conjecture 1 for two
cases: d > 0 and d = 0. Conclusions are presented in Sect. 3.

2 Main results

The following theorem is a necessary and sufficient condition for the nonlinear selec-
tion of the minimal speed. Its necessity part provides an answer to Conjecture 1.
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Theorem 2.1 When d > 0, the minimal wave speed c∗ of (1.4), under the condition
(1.3), is nonlinearly selected if and only if there exists c̄ > c0 so that the function
U (x − c̄t) in the solution (U , V )(x − c̄t) of (1.4) satisfies

U (z) ∼ C2e
−μ2(c̄)z, z → ∞, z = x − c̄t, (2.1)

for some constant C2 > 0. Furthermore, c̄ = c∗.

Proof From the above section,U (z) has the behavior in (1.6)–(1.7) for c ≥ c0. In this
theorem we shall prove that c∗ > c0 if and only if U (z), when c = c∗, has the fast
decay rate e−μ2(c∗)(z) as z → ∞.

For the sufficiency, let the solution (U, V)(z) of (1.4), when c = c̄ > c0, exist
with

U(z) ∼ C2e
−μ2(c̄)z, z → ∞, z = x − c̄t, (2.2)

for some constant C2 > 0. We shall prove that there is no traveling wave of (1.4) for
c ∈ [c0, c̄). Assume, to the contrary, there exists a monotone traveling wave solution
(U , V )(x − ct) to the original system (1.2) with the initial conditions

u(x, 0) = U (x) and v(x, 0) = V (x),

for some c in (c0, c̄). Definitely (U , V ) satisfies (1.4). In particular,U satisfies (1.6) or
(1.7). In view of (2.2) and the monotonicity of μi (c), i = 1, 2, we have U(z) ≤ U (z)
when z → ∞. On the other hand, when z → −∞, we assume thatU (z) ∼ 1− Keλz

for some positive constants K and λ. After the substitution, we can always show
that λ is decreasing with respect to c. Hence, for c̄ > c, we have U(z) ≤ U (z) when
z → −∞. Initially at t = 0, by shifting if necessary, we can assume that U(x) ≤ U (x)
for all x . In the second equation of the system (1.4), the term r(1 − V )(a2U − V ) is
monotone with respect toU . By comparison, the solution V is monotone with respect
to U . Hence, we obtain (U, V)(x) ≤ (U , V )(x), for all x . Since (U, V)(x − c̄t) is
a solution to the system (1.2) with the initial data (U, V)(x), and by comparison, we
have

U(x − c̄t) ≤ U (x − ct), (2.3)

V(x − c̄t) ≤ V (x − ct), (2.4)

for all (x, t) ∈ (−∞,∞) × (0,∞). Fix z̄ = x − c̄t to have U(z̄) > 0. Furthermore,
we have

U (x − ct) = U (z̄ + (c̄ − c)t) ∼ U (∞) = 0 as t → ∞.

By the above comparison in (2.3),we conclude that U(z̄) ≤ 0,which is a contradiction.
Hence, there is no traveling wave solution to (1.4) when c0 < c < c̄. Finally, in our
contrary assumption, if c = c0, then traveling waves exist if and only if c ≥ c0.
Naturally there exists a traveling wave with speed c in (c0, c̄). The above argument
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follows to derive a contradiction. Therefore, no traveling wave solution of (1.4) exists
when c0 ≤ c < c̄ and c∗ = c̄ is nonlinearly selected.

For the necessity, from the nonlinear system (1.4), we first transform it into an
integral system. For this purpose, let α be large enough so that the functions

F(U , V ) = αU +U (1 − a1 −U + a1V )

and

G(U , V ) = αV + r(1 − V )(a2U − V )

are nondecreasing in U and V , respectively. Introducing F and G in the system (1.4)
gives

U ′′ + cU ′ − αU = −F(U , V ),

dV ′′ + cV ′ − αV = −G(U , V ).
(2.5)

Define constants λ±
1 and λ±

2 as

λ−
1 = −c − √

c2 + 4α

2
< 0, λ+

1 = −c + √
c2 + 4α

2
> 0,

λ−
2 = −c − √

c2 + 4αd

2d
< 0, λ+

2 = −c + √
c2 + 4αd

2d
> 0. (2.6)

One can apply the variation-of-parameters to get the integral form of (2.5) as

U (z) = T1(F(U , V ))(z),

V (z) = T2(G(U , V ))(z),
(2.7)

where

T1(F)(z) = 1

λ+
1 − λ−

1

{∫ z

−∞
eλ

−
1 (z−s)F(U , V )(s)ds +

∫ ∞
z

eλ
+
1 (z−s)F(U , V )(s)ds

}
,

T2(G)(z) = 1

d(λ+
2 − λ−

2 )

{∫ z

−∞
eλ

−
2 (z−s)G(U , V )(s)ds +

∫ ∞
z

eλ
+
2 (z−s)G(U , V )(s)ds

}
.

Now, assume that the minimal speed c∗ of (1.4) is nonlinearly selected. We proceed
to prove (2.1). To the contrary, assume that the solution (U , V ) = (U∗, V ∗)(z), at
c = c∗, satisfies

U∗(z) ∼ C1e
−μ1(c∗)z, z → ∞, z = x − c∗t,

for some C1 > 0. Define

ω(z) = 1

1 + δ exp((μ1(cδ) − μ1(c∗))z)
,
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for 0 < δ � 1, and cδ = c∗ − δ. Also, let

U(z) = U∗(z)ω(z), V(z) = V ∗(z).

For small δ, U(z) is close to U∗(z) but with a different decay behavior. To get a
contradiction, we shall prove the existence of W1,W2 ∈ C0, where C0 is defined by
{u ∈ C(−∞,∞) : u(±∞) = 0}, so that

(U , V ) = (Uδ, Vδ) = (U + W1, V + W2),

is a solution to the problem (1.4) (or (2.7)) with speed cδ = c∗ − δ < c∗. Equations
for W1 and W2 can be derived by substituting this into the integral system (2.7),
and using the relation (U∗, V ∗) = (T1(F∗), T2(G∗)), where F∗ = F(U∗, V ∗) and
G∗ = G(U∗, V ∗). This gives

W1 = T1(F0) + Fω + T1(Fδ) + T1(Fh), (2.8)

W2 = T2(G0) + T2(Gδ) + T2(Gh), (2.9)

where

F0 = F0(W ) = αW1 + (1 − a1 − 2U∗ + a1V
∗)W1 + a1U

∗W2,

Fω = T1(ωF∗) − ωT1(F
∗),

Fδ = (−Ū + 2W1 − a1W2)(U
∗ − U),

Fh = W1(−W1 + a1W2),

G0 = G0(W ) = ra2(1 − V ∗)W1 + αW2 + r(−1 − a2U
∗ + 2V ∗)W2,

Gδ = ra2(−1 + V ∗ + W2)(U
∗ − U),

Gh = rW2(−a2W1 + W2).

We can easily show that Fω, T1(Fδ) and T2(Gδ) are of O(δ) when δ → 0.
The linear operator

T (W ) =
(
T1(F0(W ))

T2(G0(W ))

)
, W = (W1,W2), (2.10)

is compact and strongly positive, and has a simple principal eigenvalue λ = 1 with
the associated positive eigenfunction α∗(z) = ( d

dz (−U∗), d
dz (−V ∗)) via the Krein-

Rutman Theorem. Indeed, α∗(z) is a fixed point to the linear problem W = T (W ),

which is equivalent to

W ′′
1 + c∗W ′

1 + (1 − a1 − 2U∗ + a1V
∗)W1 + a1U

∗W2 = 0,

dW ′′
2 + c∗W ′

2 + ra2(1 − V ∗)W1 + r(−1 − a2U
∗ + 2V ∗)W2 = 0.

To remove this eigenfunction from C0, we define a weighted functional space U as

U = {u(ξ) ∈ C0 : ueμ1(cδ)ξ = o(1) as ξ → ∞}.
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For the space U × C0, the eigenvector α∗(z) is not inside, i.e., T has no eigenvalue
λ = 1 for (W1,W2) in U×C0. This means that I −T has a bounded inverse inU×C0,
where I is the identity operator. By the inverse function theorem in the abstract space
U × C0, there exists a small positive number δ0 so that the problem (2.8)–(2.9) has
a solution W = (W1,W2), for any δ ∈ [0, δ0). As such, it follows that we have a
positive solution (Uδ, Vδ) to the traveling wave problem (1.4) with cδ < c∗, which
contradicts the definition of the minimal wave speed. The proof is complete. �


We are wondering if this result is also valid for the special case when d = 0. Indeed,
the operator associated to the V -equation may not be compact or strongly positive,
and the method in the proof of Theorem 2.1 can not be directly applied. However, in
such a case, the system reads

U ′′ + cU ′ +U (1 − a1 −U + a1V ) = 0,

cV ′ + r(1 − V )(a2U − V ) = 0,

(U , V )(−∞) = (1, 1), (U , V )(∞) = (0, 0),

(2.11)

and an explicit formula of V in the second nonlinear equation can be found in terms
of U . Hence, the system can be reduced into a single equation. By working on this
new equation, the result in the above theorem can be proved for d = 0 as well. We
shall show this by providing the following theorem.

Theorem 2.2 When d = 0, the minimal wave speed c∗ of (2.11), under the condition
(1.3) is nonlinearly selected if and only if there exists c̄ > c0 so that the wavefront
solution U = U (x − c̄t) satisfies

U (z) ∼ C2e
−μ2(c̄)z, z → ∞, z = x − c̄t,

for some constant C2 > 0. Furthermore, c̄ = c∗.

Proof By the same work as that of (Alhasanat and Ou 2019b), the formula of V (z)
from the second equation in (2.11) is given by

V (U )(z) = ra2
∫ ∞
z μ(s)U (s)ds

cμ(z) + ra2
∫ ∞
z μ(s)U (s)ds

, (2.12)

where

μ(y) = exp

(
r

c

∫ y

0
(a2U (τ ) − 1)dτ

)
.

This reduces (2.11) into a non-local equation{
U ′′ + cU ′ +U (1 − a1 −U + a1V (U )) = 0,

U (−∞) = 1, U (∞) = 0,
(2.13)

where V (U ) is given in (2.12).
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Now, a similar comparison argument to that for d > 0 can be applied to prove the
sufficiency of the condition in this theorem. For the necessity, an integral equation
can be generated from the first equation of (2.13). Hence, both parts of the previous
case, d > 0, can be carried out with this new operator to get the result for d = 0. This
completes the proof. �


3 Conclusions

The minimal wave speed of traveling waves for the diffusive Lotka–Volterra com-
petition model describes the ecological invasion of a resident species by an invasive
species. Unfortunately, there is no explicit formula for this speed. However, we have
obtained the speed selection mechanism (linear or nonlinear) under the assumption
that invaders outcompetes residents, i.e., condition (1.3). Conjecture 1 of (Roques et al.
2015) was successfully proved (see Theorem 2.1). The sufficiency of the condition
in the conjecture was provided as well. Also, the problem without diffusion of the
resident species has been considered. By reducing the problem into a single equation,
we have extended our result for this special case (see Theorem 2.2).

Biologically, in an invasion system of two species with competition exclusion and
spatial dispersal, our rigorous result discloses the inside dynamics of the spreading of
invasive wave. Its linear system provides the basic pulled speed that is determined by
the leading edge of the solution. However, the invasive species can propagate with a
faster (pushed or nonlinear) speed as long as it can spatially increases its population
density with a faster rate. The resident species will response to this invasion and dies
out spatially with the same faster propagation speed.
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