value Problems
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tained by sepa-

5.3. Sturm-Liouville Eigenvalne Problems

5.3.5. For the Sturm-Liouville eigenvalue problem,

a2 L G dé .\ _
&}_2+A¢ =0 with EE(O) =0 and EI—(L) =10,
verify the following general properties:
(a) There is an infinite number of eigenvalues with a smallest but no
largest.
{b) The nth eigenfunction has n — 1 zeros.
(c} The eigenfunctions are complete and orthogonal.
(d} What does the Rayleigh quotient say concerning negative and zero
. eigenvalues?
5.3.6. Redo Exercise 5.3.5 for the Sturm-Lionville eigenvalue problem
4?9 ) ,
e +Ap=0 ‘Wlﬂ.l -d—w(ﬂ) =0 and ¢(L)=0.
5.3.7. Which of statements 1-5 of the theorems of this section are valid for
the following eigenvalue problem?

£E+)9
"9(-I) = #D)
8(-1) = Z)
5.3.8. Show that ) > 0 for the eigenvalue problem
i) a0 wn o By
-&x—a-}'(){—m )é-—-ﬂ with -&;(0)-—0, &-(1)-—0
Is A =0 an cigenvalue?
5.3.9. Consider the eigenvalue problem
ng + mg% +Ap=0 with ¢(1)=0, .and ¢(b)=0. (5.3.10)

() Show.that multiplying by 1/z puts this in the Sturm-Liouville
form. (This multiplicative factar is derived in Exercise 5.3.3.)

(b) Show that A > 0.

*(c) Since (5.3.10) js an equidimensional equation, determine all posi-
tive eigenvalues. Is A = 0 an digenvalue? Show that there is an
infintte number of eigenvalues with & smallest, but no largest.

(d) The eigenfunctions are orthogonal with what weight according to
Sturm-Liouville theory? Verify the orthogonality using properties
of integrals. '

() Show that the nth eigenfunction has n — 1 zeros.

5.3.10. Reconsider Exercise 5.3.9 with the boundsary conditions

0 with

do - d¢
2@)=0 md L(®)=0.
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This approximation is not very good if a; = 0, in which case (5.4.14) should begin & *542 Consid
.with the first nonzero term. However, often the initial temperature f(z) is non- St
negative (and not identically zero). In this case, we will show from (5.4.13) that | 2
o #0: L . where ¢
_ Iy f@)s()clalpta) da . ¢
== . (5.4.15) ¥ 2
Jo #(@)c(z)o(=) dw 0
It follows that a1 # 0, because ¢;(z) is the eigenfunction corresponding to the 3 "
lowest eigenvalue and has no zeros; ¢1(z) is of one sign. Thus, if f(z) > 0 it L
follows that a; 3 0, since ¢(z) and p(z) are positive physical functions. In order to i _
sketch the solution for large fixed ¢, (5.4.14) shows that all that is needed is the first i Assum
eigenfunction. At the very least, s numerical calculation of the first eigenfunction B value 1
is essier than the computation of the first hundred. i .
For large time, the “shape” of the temperature distribution in space stays ap- 5.4.3. Solve
proximately the same in time. Its amplitude grows or decsys in time depending on B
whether A1 > 0 or Ay < 0 (it would be constant in time if A; = 0). Since this is a " 2
heat flow problem with no sources and with zero temperature at 2 = 0, we certainly R with 1t
expect the temperature to be exponentially decaying toward 0° (i.e., we.expect that g that t.
AL > 0). Although the right end is insulated, heat energy should ﬂow out the left . & comph
end since there ¥ = 0. We now prove mathematicelly that all A > 0. Since p(z) = T '
Ky(z), g(z) =0, and o(z} = ¢(z)p(z), it follows from the Rayleigh quotient that i 5.4.4. Consi
_ Jy Kol(=)(dg/dz)? da |
=40 , (5.4.16) 8
Jo #2e(&)p(x) de b B
. L Solve
where the boundary contribution to (5.4.16) vanished due to the specific homoge- : u:e .
neous boundary conditions, (5.4.7) and (5.4.8). It immediately follows from (5.4.16)
that all A > 0, since the thermal coefficients are positive. Furthermore, X > 0, since 5.4.5. Consi
¢ = constant is not an allowable eigenfunction [because ¢(0) = 0]. Thus, we have
shown that lim, oo #(z, £) = 0 for this example.
XERCISES 5.4 where
.4.1. Consider PU Bu
cpat B2 (Koa ) + ou,
K fun £ bi R Assw
where ¢, g, Kg, o are functions of z, subject to : g value
u(0,8) = 0 : e
N(L:t = 0 *5.4-6. Cons
u(z,0) = flz). poss
‘ boun
Assume that the appropriate eigenfunctions are known. g is in
(a) Show that the eigenvalues are positive if @ < 0 {see Sec. 5.2.1). ) sp::
(b) Solve the initial value problem. 4 bour
(c) Briefly discuss lims—.qo (2, 2). g with
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Consider
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where ¢, p, K are functions of 2, subject to

204 = 0
%(Lat), =0
u(z,0) = flx).

Assume that the appropriste eigenfunctions are known. Solve the initial
value problem, briefly discussing Hm;—, o0 u(x, t).

212 (2)

Solve

ot rdr\ Or

with w(r,0) = f(r},u(0,?) bounded, and u(a,2) = 0. You may assume
that the corresponding eigenfunctions, denoted ¢,(r), are known and are
complete) {Hint: See Sec. 5.2.2.)

Consider the following boundary value problem:

Su _Hu .. Ou
E = k-a—:l:i with a(o,t) =0 and ‘U,(L,t) =0.
Sdlve such that u(z,0) = sinz/L (initial condition). (Hint: If necessary,
use 4 table of integrals.) ,
Consider o2 62
i -
where p(z) > 0, a(z) < 0, and Tp is constant, subject to

#{0,£) =0 u(m 0) = f(z)
u(L,t} =0 8u(z 0) = glz).

Assume that the appropriate eigenfunctions are known. Solve the initial
value problem.

Consider the vibrations of a nonuniform string of mass density pg(z). Sup-
pose that the left end at z = 0 is fixed and the right end obeys the elastic

'boundary condition: Hu/8x = —(k/Th)u at = L. Suppose that the string

is initially ai rest with a lmown initial position f(z). Solve this initial
velue problem. {Hinis: Assume that the appropriate eigenvalues and corre-
sponding eigenfunctions are known, What differential equations with what
boundary conditions do they satisfy? The eigenfunctions are orthogonsl
with what weighting function?)
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are eigenvalue problems. In general, for a partial differential equation in V variables
that completely separates. there will be N ordinary differential equations, N —1 of
which are one-dimensional eigenvalue problems (to determine the N — 1 separation
constants}). We have already shown this for N = 3 (this section) and N = 2.

EXERCISES 7.3
7.3.1. Consider the heat equation in a two-dimensional rectangular region 0 < z <

LO0<y<H,
ou (0" O
o~ "\ T o

subject to thse initial condition
w(z,9,0) = f(z,3).

Solve the initial value problem and analyze the temperature as ¢t — oo if
the boundary conditions are

*(a) u(0,4,9)=0, u(@pt=0 | uz0t =0, ulxHit)=0
(b) %(O:y:t) =0, %(L:y!t) =0, %(m: Ozt) =0, %(zsﬂlt) =0
*c) 2L0,5,8)=0, 2Ly =0, u(z0,%)=0, ulzr,Ht)=0
@) w0t =0, $(Ly1)=0, §(z,0,8=0, §(zH1)=0
(e) u(0,y,¢) =0, w(L,pt) =0, u{z,0,t)=0,
%4 (z, H,t) + hu(e, H,t) =0, (h>0)

7.3.2. Consider the heat equation in a three-dimensional box-shaped region,
O<zs<L,0<y< H, O0<2z< W,

Su . (%u 8% B
a“’“(a‘z*WJf@)

subject to the initial condition
(2,9, 2,0) = f(=,9,2).

Solve the initial value problem and analyze the temperature as ¢ — co if
the boundary conditions are

\/ (a') u(oa ¥ %t =0, 'g—:(zﬁ 0,2,%) =0, %u;(m, ¥,0, t) =0,
‘U-(L, Uz t) =0, %(ﬂh H,z, t) =0, u(wl'y’ W,t) =0
*(b) %Eu'(o&ys EA t) =0, ) %(ﬂ;a 0,2, t) =0, %%((B, ¥, 0, t} =10,

%(L,y:z,t)=0, %‘(msﬂsz:t)=01 'g%(m,v,W,t) =0

7.3. Vibratin

7.3.3

7.3.4.

7.3.5.

7.3.6.

Solve

on. a

Cons’
Lo

subje

Solve
(a)
*(b)

Cons:

()
(b)

Cons

inarz
isz=

and 1

()
*(b)
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l1ations, N —1 of
V — 1 separation
od N =2.

rregion( <z <

we a8 £ — oo if

o(z, H, 1) =0
e, H,t) =0
iz, H,t) =0
%‘(m,H,t) =0

sed region,

re as £ — oo if

f(m!yx O:t) = 01
2,y W,tf =0
f(ﬂ:: ¥ O’t) =0,

f(ﬂ:.y,WJ) =0

7.3, Vibrating Rectangular Membrane 287

7.3.3

7.3.4,

7.3.5.

7.3.6.

Solve
ou_, Pu O
ot 8z oy?
on a rectangle (0 < z < L,0 < y < H) subject to

u(0,y,%) 0 &(z,0,8) = 0
“(xsyro)':f(‘”:?l) u(L,y,t) = 0 'g“_?(msﬂzt)

il
td

Consider the wave equat;ion for a vibrating rectangular membrane (0 < 2 <
L 0<y<H) 5
U Pu  Hu
% =< (& 5)
subject to the initial conditions

Su
ﬂ.(.’.ﬂ, ¥, 0) =0 and E(ﬂ“.’y: 0) = f(ml y)'
Solve the initial value problem if

u(L,y,2) =0, B%(z,0,0)=0, £i(z,H,8)=0

(2) u(0,y,1) = 0,
*(b) 22(0,9,8) =0, §5(L,3,8)=0, P(z,0,8)=0, §i(z,H,f}=0
Consider

u Fu  Pu du

-bt?—-cg (@‘}“8?) -*k-ét— with k > 0.
(a) Clive a brief physical interpretation of this equation.

(b) Suppose that u(z,y,t) = f(z)g(y)h(f). What ordinary differential
equaitions are satisfied by f, g, and h?

Consider Laplace's equation
u  Fu  Ou
g toa

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = (. Assume that

Vu = 0

" Eulz,y,0) =

0
u(z, ¥, H) flz,w)

and © = 0 on the “lateral” sides.

(a) Separate the z-variable in general.
*(b) Solve for w(z,y, z) if the region is & rectangular box, 0 <z < L,0 <
y<Wio<z< H.
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this case, (7.4.11), the generalized Fourier coefficient anm can be evaluated in
two equivalent ways:

{e) Using one two-dimensional orthogonality formula for the eigenfunctions
of V26 + Ad = 0
{(b) Using two one-dimensional orthogonality formulas

Ceonvergence, As with any Sturm-Liouville eigenvalue problem (see Sec.
5.10), & finite series of the eigenfunctions of V¢ + A¢p = 0 may be used
to approximate a function. f(z,y). In particular, we could show that if we
megsure error in the mean-square sense,

2
E= Jg (f ‘;ax¢a) dz dy,

with weight function 1, then this mean-square error is minimized by the co-
efficients g) being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, E — 0 as all the eigenfunctions are included. We ssy that the
geries ), ox¢) converges in the mean to f.

(7.4.16)

EXERCISES 7.4

\/7.41.

\/ 7.4.2.

7.4.3.

7.44.

Consider the ¢igenvalue problem

V¢ +2r$=0
20,) = 0 ¢z0 = 0
8Ly =0 $H =0

*{a) Show that there is a doubly infinite set of eigenvalues.
(b) If L = H, show that most eigenvalues have more than one eigenfunc-

tion. ;
(¢} Derive that the eigenfunctions are orthogonal in a two-dimenstonal
sense using two one-dimensienal orthogonality relations.

‘Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).
If necessary, see Sec. 7.5:

(2) Derive that ff(uV?» — vV2u)dz dy = §(uVy — vVu) - R ds.

(b) From part (a), derive (7.4.5).

Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by ¢ and
integrate.] )
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(2).  (8.2.29)
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8.2.3.

\/ 8.24.

8.2.5.

8.2.6.

L

Solve the two-dimensional heat equation with circularly symmetric time-
independent sources, boundary conditions, and initial conditions (inside a

circle):
u ko[ b

with _
u(r,0) = f(r) and u(a, &) =T.

Solve the two-dimensionsal heat equation with time-independent boundary
conditions:

bu_, (Pu, O

ot \8z2  8y?
subject'to the boundary conditions

w(0,9,t) =0~ Zu(z,0,2) =0
u(L,y,%) =0 1?:1:, H,t) = g(z)

and the initial condition
u{z,y,0) = f(z, y)'
Analyze the limit as £ - co.

Solve the initial value problem for a two-dimensional heat equation inside a
circle (of radius @) with time-independent boundary conditions:

%tﬁ = kV’u
'u(a’ﬂit) = g(g)
w(r6,0) = f(r,0).
Solve the wave equation with time-independent sources,
u &
7@ = Pt
au(m,ﬂ) = fz)
Fulz,0) = gl2),

if an “equilibrivm® solution exists. Analyze the behavior for large i. If
no equilibrium exists, explein why and reduce the problem to one with
homogeneous boundary conditions. Assume thab

*(a) Qz}=0, u(0,t)=4, u(l,i)=B
(b) Q(z)=1, u(0,%) =10, ul(l,t) =0
() @=)=1, u(0,t) = A, u(L,t) =B

[Hint: Add problems (a) and (b).]
* (d) Q(ﬂ:) = 5531“—1’?3 u(o, t) =0, u(L:t) =0



