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Ol
EWV 3.8.17 - Fowrier series of n.ouﬁbﬁozm function with (a)
F(=L)  £(L) and (b) F(-L) = :

=3

ntinuous for 0 € x <L is sketched in Fig. 3.3.18. First we extend f(z)
d then periodically’ It is easily seen that

viecewise smooth f(z), the Fourier cosine series of f(z) is continuous
:onverges to f(z) for 0 < & < L if and only if f(z) is continuous.

‘hat no additional conditions on f(x) are necessary for the cosine series to
uous (besides f({z) being continuous). One reason for this result is that if
miinuous for 0 < z < L, then the even extension will be continuous for

AN
A

Figure 3.2.18 Fourier cosine series of a continuous function.
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Figure 3.3.18 Fourier sine series of a continuous function with
(a) £(0) # 0 and f{Z) # 0; (b) £(0) = O but f(L) # 0; (c) /(L) =0
but £(0) # 0; and (d) £(0) = 0 and f(Z}=0.

& z € L. Also note that the even extension is the same at -£L. Thus, the
odic extension will automatically be continuous at the endpoints.

¢ Compare this result to what happens for a Fourier sine geries. Four examples
considered in Fig. 3.3.19, all continuous functions for 0 < z < I. From the first
e Bigures, we see that it is possible for the Fourier sine series of a continuous
ction to be discontinuous. It is seen that

For Em.nmﬂmm smooth functions f(x), the Fourier sine series of f (=),
.| s continuous and converges to f(z) for 0 < z < L if and only if
| f(z) is continuous and both f(0) =0 ond f{L)=0.

(0) # 0, then the odd extension of f(z) will have a jump discontinuity at
0, as illustrated in. Figs. 3.3.192a and ¢. ¥ f(I) # 0, then the odd extension at
‘—L.will be of opposite sign from f(L). Thus, the periodic extension will not
continuous at the endpoints if f(L) # 0 as in Figs. 3.3.192a'and b.

S UXERCISES 3.3

1. For the following functions, sketch f(z}, the Fourier series of f(z), the
Fourier sine series of f(x), and the Foutior cosine series of f(x).
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™ Chapter 3. Fourier Series

) f@=1ts

@ fl@)=¢

3.3.2. Tor the following functions, sketch the Fourier sine series of f(z) and deter-

mine its Fourier coefficients.

f(z) = cosma/L . 1 z<L/6
®)  Werify formula (3.3.13)] (b) flz)= w w\vm M\w <L/2
Vo r@={2 35 @ s@={7 257

33.3. For the following functions, sketch the Fourier sine series of f(z). Also,

roughly sketch the sum of a finite number of nonzero terms (at least the

first two) of the Fourier sine series:

{a) f(z)=rcoswz/L [Use formula (3.3.13).]

o @={7 25t

(c) f(z) == [Use formula (3.3.12) ]

3.3.4. Sketch the Fourier cosine series of f{z) = sinaw/L. Briefly discuss.

3.35. For the following functions; sketch the Fourier cosine series of %Aau and

determine its Fourier coefficients:
1 z<L/f6

0 z>L/2

@ f@=5 () fle)=43 L/6<z<Lf2 () /Ha)= ﬁ Hmm“w

33.6. For the foliowing functions, sketch the Fourier cosine series of f(z). Also,

roughly sketch the sum of a finite number of nonzero terms (at least the

first two) of the Fourier cosine series:

!
L

(a) f(z) = = [Use formulas (3.3.22) and (3.3.23).]

1 avm\m _

E a@ Ao @ <Lf2 Egoﬁ&_uﬁoﬁaaameﬁﬁmi:.

3.3, Cesine and Sine Series -

338 ‘ﬁwu,..UmemHE_.hm formulas for the even extension of any f
the formula for the even part of f(z).

(b) Do the same for the odd extension of f(z) and the ¢
(c) Calculate and sketch the four functions of parts {a)

_J = =3>1

.ﬂ.ﬁavlﬁ 2 z<0.
Graphically add the even and odd parts of f(z). WI
larly, add the even and odd extensions. What occurs

3.3.9. What is the sum of the Fourier sine series of f(z) and t
series of f()? [What is the sum of the even and odd ext

HAM , what are the even and odd par

72
%3.3.10. Tf f(z) = A Y
3.3.11, Given a sketch of f{z), describe a procedure o sketch t
parts of f(z).

3.3.12. (a) Graphically show that the even terms (n even) of the
of any function on 0 < .z < L are odd (antisymmetric;
(b) Consider a function f{z) that is odd around = = L/
odd coefficients (n odd) of the Fourier sine series of f
are zero.

*3.3.13. Consider a function f{z) that is even around z = L/2. St
coefficients (n even) of the Fourier sine series of f(x} on 0

3.3.14, (a) Consider a function f{z) that is even around z =
the odd coefficients (n odd) of the Fourier cosine
0 < ¢ < L are zero,

{b) Explain the result of part (a) by considering a Fouri
F(z) on the interval 0 £ z < L/2.

3.3.15. Cousider a function f(z) that is odd around z = L/2. St
coefficients (n even) of the Fourier cosine series of f(z) «
Zero.

3.3.16. Fourier series can be defined on other intervals besides —
pose that g{y) is defined for a < ¥ < b. Represent g(;
ﬁ_mobouumgo msbneoum ﬂﬂ.& period b g. Determine forn
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Figure 3.2.1 Sketch of f(z)
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Figure 3.2.2 Fourier series of f(z).

umm. "
.w. o=-L -
- nmz _ 0 -L<z<L/2
5+Mupa8ml|+Muw= 3 z=L/2
n=1 n=1 1 .H.\MAHAU
i z=1L

ies can converge to rather strange functions, but they are not so different
riginal function.

er coefficients. For a given f(z), it is notf necessary to calculate
: coefficients in order to sketch the Fourier series of f(z). However, it is
to know how to calculate the Fourier coefficients, given by (3.2.2). The
of Fourier coefficients can be an algebraically involved process. Some-
an exercise in the method of integration by parts. Often, calculations
plified by judiciously using integral tables or computer algebra systems.
1t, we can always use a computer to approximate the coefficients numer-
m overly simple example but one that illustrates some important points,
z) given by (3.2.5). From (3.2.2), the coefficients are

(3.2.6)

nmT 2

1 L 1 o
f”.l.\ \.&TEE&HII E.bﬁhﬂ.&nﬂlunomﬁ
-~ h .H__ .H-\M .h. nw .N.s
L/
1
= ﬁnom — —cosnr (3.2.8)

S.,m omit simplifications that arise by noting that sinnx = 0, cosnr = (—1)*, and
50 Om.

XERCISES 3.2

-1, For the following functions, sketch the Fourier series of f(z) (on the interval
—L < 2 < L). Compare J{z) to its Fourier series:

(8) f(@)=1
() fl&)=1+z

© 1@={3, 250

*(b) flz)= a»
*(d) f(z)=

0 1) = T: i

® 1@-{; 25

2. For the following functions, sketch the Fourier series of f(z) (on the interval
-L <z < L) and determine the Fourier coefficients:

) £o) = 24
0
V@ 1@={2 258

*(a) flz)=x
#(c) fl)=sin ™2

1 |z]<L/2

() %A&HA.Q lz| > L/2 *( .u__?.uﬂﬁw HMW

® f@-{; 258

= IH.-..mmE_.S. —sid @v (3.2.7)




» 3. Fourler Series ‘4, Term-by-Term Differentiation 125

Suppose that f(z) is continuous [except for a jump d.lscontmmty at & = zo,

f(#5) = o and f(xf) = B} and df /dz is piecewise smooth.
n a parameter t) _ .
nwT *(a) Determine the Fourier sine series of df /dz in terms of the Fourier cosine
T] series coefficients of f(z).
w f, yielding (b) Determine the Fourier cosine series of df /dx in terms of the Fourier
i sine series coefficients of f(x).
ik 34.4. Suppose that f(z) and df/dz are piecewise smooth.

(:ﬂ.) Prove that the Fourier sine series of a continuous function f(a:) can

chat only be differentiated term by term if f(0)} =0 and f(L) =
&

(b} Prove that the Fourier cosine series of a continuous functlon _f (z) can
be differentiated term by term.

t3.4.5. Using (3.3.13) determine the Fourier cosine series of sinnz/L.

Lk . 3.46. There are some things wrong in the following demonstration. Find the
*bually a solution mistakes and correct them.
) and u(L,t) =0.
s problem. First,
and u(L,) = 0,
w see that all the
«d to assume that

In this exercise we attempt to obtain the Fourier cosine coefficients of e=:

e =Ag+ Y Ancos ? (3.4.22)
n=1

ms, - : .
| Differentiating yields
%
W | W nw
b5 a 7 - Z —Ap sin ——,
p ?' e n=1
] the Fourier sine series of e®. Differentiating again yields
,a . | — /nm\2 nr
B | g/ 2 ef=— Z (TL—) Ap cos T (3.4.23)
3 continuous and . (NI n=1
hat u, v, du/dz, 4 | i
< b ,w e’ assumt; i3 g Since equations (3.4.22) and (3.4.23) give the Fourier cosine series of €®,
i they must be identical. Thus,
Ty du/da: dz. ’ :,' i j: :0 } (obviously wrongl).

rmuls fuandw | z
%/dp and dv/dz X By correcting the mistakes, you should be able to obtain Ag and A,, without

using the typical technique, that is, A, = 2/L j;, e® cosnmz/L dz.

that the Fourier |

34.7. Prove that the Fourier series of a continuous function u(x,t) can be differ-
ier sevies of f(z) [

entiated term by term with respect to the parameter ¢ if Su/5¢ is piecewise
smooth.




3. Fourier Series . 3.6. Complex Form of Fourier Series

XERCISES 3.5 LT
85.1. Consider R

z? g by sin "—L”f | (3.5.12) ‘*L“t.{" '.
(a) Determine by, from (3.3.11), (3.3.12), and (3.5.6).

(b) For what values of & is (3.5.12) an equality?

o *(c) Derive the Fourier cosine series for 3 from (8.5.12). For what values
dz = 0). The _ + of z will this be an equality?

“i- 352, () Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of 22,
€ o (b) From part (), determine the Fourier sine series of 2.
£ : I ‘}i"'._ 3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of z™,

m odd.

¥3.5.4. Suppose that coshz ~ Y2 | b, sinnrz/L.

b (a) Determine b, by correctly differentiating this series twice,

(2
- nn/L’ (b) Determine b, by integrating this series twice.
- {3.5.10 . .
z). In a(simila.z- 3.5.5. Show that B, in (3.5.9) satisfies By = an/(nn/L), where a, is defined by
N (3.5.1).
3.5.6. Ewvaluate

o101 1 1 1
1+—~22+—32+4——2+—52+*—62+-'~
zd in & different

by evaluating (3.5.5) at z = 0.
ie Fourier series

3.5.7. Ewvaluate

using (3.5.6).

-l :8.6 *Complex Form of Fourier Series
f)], (3.5.11)

With -periodic boundary conditions, we have found the theory of Fourier series to
~ be quite useful: '

se that (3.5.11) -

3.5.11Y) is valid.

o0
f(m)~ag+2(anms%g+bnsinn—2% ’ (3.6.1)
n=1
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4.4.3.

4.4.4.
4.4.5.
4.4.6.

Chapter' 4, Wave Equation

Consider a slightly damped vibrating string that satisfies

8u 2y
Pog = T0g3 ~ -5 Bt

(a) Bneﬂy explain why # > 0.
*(b) Determine the solution (by -seperation of variables) that satisfies the
boundary conditions

u(0,8)=0 and u(L,t)=0
and the initial conditions

u(z,0)= @) sd 24(z,0)=g(e).

You can assume that this frictional coefficient 2 is relatively small L

(82 < dn2poTo/L?).
Redo Exercise 4.4.3(b) by the eigenfunction expansion method. .
Redo Exercise 4.4.3(b) if 4n2poTh/L? < B2 < 16m%paTo/ L2,
For (4.4.1)-(4.4.3), from (4.4.11) show that
u(z,t) = Rz — ct) + S(z + ct),

where R and § are some functions.

If a vibrating string saf.lsfymg (4.4.1)~(4.4.3) is initially at rest, g(x) =0,
show that
u(m,t) = E[F(” —et) + Fz +ct)],

where F(z) is the odd periodic extension of f(). Hinis:

1. For all z, F(z) = Y oy Ansin BfE.
2. sinacosb = [sin{a -+ b) + sin(a — b)]-
omment: This result shows that the practical difficulty of summing an
infinite number of terms of o Fourier series may be avoided for the one-
dimensional wave eguation.
If a vibrating string satisfying (4.4.1)—(4.4.3) is initially unperturbed, f(z) =
0, with the initial velocity given, show that :
1 +ot .
u(m’t) = 2_c G(w) d!l},

z~ch

where G{z) is the odd periodic extension of g(a:). Hints:
1. For all z, G(z) = 3} °°,.,l_1 By M€ sin 2%

4.5. Vibia
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