[7] 1. Find the inverse of A and then solve the system is $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 0 & 1\end{array}\right]$, $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}8 \\ 5 \\ -7\end{array}\right]$.
Solution: We have $[A \mid I]=\left[\begin{array}{rrr|rrr}0 & 1 & -1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{rrr|rrr}1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 3 & -2 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -2 & 2 & -1 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 3 & -2 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & \frac{1}{2} & -\frac{1}{2}\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 1 & -\frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -1 & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$,
so $A^{-1}=\frac{1}{2}\left[\begin{array}{rrr}2 & -1 & 3 \\ 0 & 1 & -1 \\ -2 & 1 & -1\end{array}\right]$ and $\mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{2}\left[\begin{array}{rrr}2 & -1 & 3 \\ 0 & 1 & -1 \\ -2 & 1 & -1\end{array}\right]\left[\begin{array}{c}8 \\ 5 \\ -7\end{array}\right]=\left[\begin{array}{c}-5 \\ 6 \\ -2\end{array}\right]$.
[5] 2. Determine if A is invertible and if so find A^{-1} :
$A=\left[\begin{array}{rrr}0 & -1 & 2 \\ 2 & 1 & 4 \\ 1 & -1 & 5\end{array}\right]$.
Solution:

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{rrr|rrr}
0 & -1 & 2 & 1 & 0 & 0 \\
2 & 1 & 4 & 0 & 1 & 0 \\
1 & -1 & 5 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 5 & 0 & 0 & 1 \\
0 & -1 & 2 & 1 & 0 & 0 \\
2 & 1 & 4 & 0 & 1 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & -1 & 5 & 0 & 0 & 1 \\
0 & 1 & -2 & -1 & 0 & 0 \\
0 & 3 & -6 & 0 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 3 & -1 & 0 & 1 \\
0 & 1 & -2 & -1 & 0 & 0 \\
0 & 0 & 0 & 3 & 1 & -2
\end{array}\right] .
\end{aligned}
$$

There is no inverse.
[3] 3. Which of the following matrices are elementary matrices, explain why.
(a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Solution: Yes, this matrix is obtained from I_{2} by applying $R_{1} \Leftrightarrow R_{2}$.
(b) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$

Solution: Yes, this matrix is obtained from I_{3} by applying $-2 R_{1}+R_{3} \Rightarrow R_{3}$.
(c) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

Solution: No, this matrix cannot obtained from I_{3} by a single operation, we require 2 operations.
[8] 4. Let $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{ll}6 & 2 \\ 2 & 4\end{array}\right]$, and $C=\left[\begin{array}{cc}4 & -2 \\ -6 & 3\end{array}\right]$. Solve each of the following matrix equations:
(a) $A X+B=C$

Solution: We have $A X=C-B$ and so $X=A^{-1}(C-B)$. Thus, $X=$ $\frac{1}{10-9}\left[\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right]\left[\begin{array}{ll}-2 & -4 \\ -8 & -1\end{array}\right]=\left[\begin{array}{cc}20 & -5 \\ -34 & 7\end{array}\right]$.
(b) $X A+C=X$

Solution: We have $X A-X=-C$. Thus, $X(A-I)=-C$ which implies that $X=-C(A-I)^{-1}$. Thus, $X=-\left[\begin{array}{cc}4 & -2 \\ -6 & 3\end{array}\right]\left[\begin{array}{ll}4 & 3 \\ 3 & 1\end{array}\right]^{-1}=\frac{-1}{5}\left[\begin{array}{cc}-10 & 20 \\ 15 & -30\end{array}\right]$
[6] 5. For each of the following pairs of matrices, find an elementary matrix E such that $E A=B$.
(a) $A=\left[\begin{array}{cc}-9 & -1 \\ 5 & 3\end{array}\right], B=\left[\begin{array}{cc}-4 & 2 \\ 5 & 3\end{array}\right]$.

Solution: Note that if we replace the first row of A by $R_{2}+R_{1}$, we obtain B. The matrix E is obtained by applying the operation $R_{2}+R_{1} \rightarrow R_{1}$ to I_{2} :
$E=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
(b) $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ -2 & 4 & 5 \\ 3 & 1 & 4\end{array}\right], B=\left[\begin{array}{ccc}2 & 1 & 3 \\ 3 & 1 & 4 \\ -2 & 4 & 5\end{array}\right]$

Solution: Note that if we switch rows two and three of A, we obtain B. The matrix E is obtained by applying the operation $R_{2} \leftrightarrow R_{3}$ to I_{3} :
$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(c) $A=\left[\begin{array}{ccc}4 & -2 & 3 \\ 1 & 0 & 2 \\ -2 & 3 & 1\end{array}\right], B=\left[\begin{array}{ccc}4 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 3 & 5\end{array}\right]$

Solution: Note that if we replace the third row of A by $2 R_{2}+R_{3}$, we obtain B. The matrix E is obtained by applying the operation $2 R_{2}+R_{3} \rightarrow R_{3}$ to I_{3} :

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]
$$

[8]
6. Let $A=\left[\begin{array}{cc}0 & -1 \\ 2 & 1\end{array}\right]$.
(a) Express A as a product of elementary matrices.
(b) Express A^{-1} as a product of elementary matrices.

Solution: We have $\left[\begin{array}{cc}0 & -1 \\ 2 & 1\end{array}\right] \rightarrow\left[\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right]=E_{1} A \rightarrow\left[\begin{array}{cc}1 & \frac{1}{2} \\ 0 & -1\end{array}\right]=E_{2} E_{1} A$ $\rightarrow\left[\begin{array}{ll}1 & \frac{1}{2} \\ 0 & 1\end{array}\right]=E_{3} E_{2} E_{1} A \rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I=E_{4} E_{3} E_{2} E_{1} A$, where

$$
E_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{rr}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad E_{4}=\left[\begin{array}{rr}
1 & -\frac{1}{2} \\
0 & 1
\end{array}\right] .
$$

Thus $A=\left(E_{4} E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}1 & \frac{1}{2} \\ 0 & 1\end{array}\right]$.
and $A^{-1}=E_{4} E_{3} E_{2} E_{1}=\left[\begin{array}{cc}1 & -\frac{1}{2} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

