MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 1
Mathematics 2050
Fall 2018

Due: Sept 21, 2018 SHOW ALL WORK

[6] 1. Vector \vec{w} has the starting point $(1,2,3)$ and the ending point $(-4,7,5)$. which of the following vectors is parallel to \vec{w} ?
(a) $\vec{u}=\left[\begin{array}{l}3 \\ 4 \\ -1\end{array}\right]$,
(b) $\vec{v}=\left[\begin{array}{l}10 \\ -10 \\ -4\end{array}\right]$
(c) $\vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
[4] 2. The shape $A B C D$ is a parallelogram where $A(1,0,0), B(2,1,1), C(3,4,5)$. Find the coordinate of the point D. What is the coordinate of the intersection point of AC and BD ?
[4] 3. Let $P_{1}(1,2,-1)$ and $P_{2}(3,4,5)$. Find the point of P on the line segment of P_{1} and P_{2}, so that $P_{2} P$ is $\frac{1}{4}$ of $P_{2} P_{1}$.
4. (a) Is $\vec{w}=\left[\begin{array}{l}1 \\ 10\end{array}\right]$ a linear combination of $\vec{u}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$?
(b) Can every vector $\vec{w}=\left[\begin{array}{l}a \\ b\end{array}\right]$ be written as a linear combination of \vec{u} and \vec{v} ?
[6] 5. In each of the following case, either express p as a linear combination of u, v, w, or explain why there is no such linear combination.
(a) $p=\left[\begin{array}{l}4 \\ 5 \\ 3\end{array}\right], u=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \quad w=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(b) $p=\left[\begin{array}{l}-1 \\ 2 \\ 4 \\ 0\end{array}\right], u=\left[\begin{array}{l}3 \\ 7 \\ 0 \\ -4\end{array}\right], v=\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 9\end{array}\right], \quad w=\left[\begin{array}{l}3 \\ 1 \\ 4 \\ 5\end{array}\right]$
[3] 6. Let \vec{u}, \vec{v} and \vec{w} be vectors. Show that any linear combination of \vec{u}, \vec{v} is also a linear combination of $-2 \vec{u}, 3 \vec{v}$ and \vec{w}.
7. In each case, determine whether \vec{u} is in the plane spanned by \vec{v} and \vec{w}.
(a) $\vec{u}=\left[\begin{array}{l}-5 \\ 0 \\ 6\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right] \quad \vec{w}=\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]$
(b) $\vec{u}=\left[\begin{array}{l}6 \\ 7\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}3 \\ 5\end{array}\right] \quad \vec{w}=\left[\begin{array}{l}4 \\ 7\end{array}\right]$

