MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 1	Mathematics 2050	Fall 2018

Due: Sept 21, 2018 SHOW ALL WORK

[6] 1. Vector \vec{w} has the starting point (1, 2, 3) and the ending point (-4, 7, 5). which of the following vectors is parallel to \vec{w} ?

(a)
$$\vec{u} = \begin{bmatrix} 3\\4\\-1 \end{bmatrix}$$
, (b) $\vec{v} = \begin{bmatrix} 10\\-10\\-4 \end{bmatrix}$ (c) $\vec{x} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$

- [4] 2. The shape ABCD is a parallelogram where A(1,0,0), B(2,1,1), C(3,4,5). Find the coordinate of the point D. What is the coordinate of the intersection point of AC and BD?
- [4] 3. Let $P_1(1, 2, -1)$ and $P_2(3, 4, 5)$. Find the point of P on the line segment of P_1 and P_2 , so that P_2P is $\frac{1}{4}$ of P_2P_1 .

[6] 4. (a) Is
$$\vec{w} = \begin{bmatrix} 1\\10 \end{bmatrix}$$
 a linear combination of $\vec{u} = \begin{bmatrix} 1\\4 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 2\\3 \end{bmatrix}$?
(b) Can every vector $\vec{w} = \begin{bmatrix} a\\b \end{bmatrix}$ be written as a linear combination of \vec{u} and \vec{v} ?

[6] 5. In each of the following case, either express p as a linear combination of u, v, w, or explain why there is no such linear combination.

(a)
$$p = \begin{bmatrix} 4\\5\\3 \end{bmatrix}$$
, $u = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $v = \begin{bmatrix} 1\\1\\0 \\0 \end{bmatrix}$, $w = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$
(b) $p = \begin{bmatrix} -1\\2\\4\\0 \end{bmatrix}$, $u = \begin{bmatrix} 3\\7\\0\\-4 \end{bmatrix}$, $v = \begin{bmatrix} 0\\2\\0\\9 \end{bmatrix}$, $w = \begin{bmatrix} 3\\1\\4\\5 \end{bmatrix}$

- [3] 6. Let \vec{u}, \vec{v} and \vec{w} be vectors. Show that any linear combination of \vec{u}, \vec{v} is also a linear combination of $-2\vec{u}, 3\vec{v}$ and \vec{w} .
- [6] 7. In each case, determine whether \vec{u} is in the plane spanned by \vec{v} and \vec{w} .

(a)
$$\vec{u} = \begin{bmatrix} -5\\0\\6 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} -1\\2\\3 \end{bmatrix} \quad \vec{w} = \begin{bmatrix} 3\\4\\0 \end{bmatrix}$$

(b) $\vec{u} = \begin{bmatrix} 6\\7 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 3\\5 \end{bmatrix} \quad \vec{w} = \begin{bmatrix} 4\\7 \end{bmatrix}$