MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 1
Mathematics 2050
Fall 2018

Due: Sept 21, 2018 SHOW ALL WORK

[6] 1. Vector \vec{w} has the starting point $(1,2,3)$ and the ending point $(-4,7,5)$. which of the following vectors is parallel to \vec{w} ?
(a) $\vec{u}=\left[\begin{array}{l}3 \\ 4 \\ -1\end{array}\right]$,
(b) $\vec{v}=\left[\begin{array}{l}10 \\ -10 \\ -4\end{array}\right]$
(c) $\vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Solution: $\vec{w}=\left[\begin{array}{l}-4-1 \\ 7-2 \\ 5-3\end{array}\right]=\left[\begin{array}{l}-5 \\ 5 \\ 2\end{array}\right] \cdot \vec{v}=2 \vec{w}$. Therefore, \vec{v} is parallel to \vec{w}.
$\vec{x}=0 \vec{w} . \vec{x}$ is parallel to \vec{w}.
\vec{u} cannot be expressed as a scalar multiple of $\vec{w} \cdot \vec{u}$ is not parallel to \vec{w}.
[4] 2. The shape $A B C D$ is a parallelogram where $A(1,0,0), B(2,1,1), C(3,4,5)$. Find the coordinate of the point D. What is the coordinate of the intersection point of AC and BD ?
Solution: $\overrightarrow{A B}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \overrightarrow{B C}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$. By $\overrightarrow{A D}=\overrightarrow{B C}$, we can get $D(2,3,4)$.
The intersection point is the mid-point of $B D$. Its coordinate is $\left(2,2, \frac{5}{2}\right)$.
[4] 3. Let $P_{1}(1,2,-1)$ and $P_{2}(3,4,5)$. Find the point of P on the line segment of P_{1} and P_{2}, so that $P_{2} P$ is $\frac{1}{4}$ of $P_{2} P_{1}$.
Solution: Set $P(x, y, z)$. Then $\overrightarrow{P_{2} P_{1}}=\left[\begin{array}{l}1-3 \\ 2-4 \\ -1-5\end{array}\right]=\left[\begin{array}{l}-2 \\ -2 \\ -6\end{array}\right], \overrightarrow{P_{2} P}=\left[\begin{array}{l}x-3 \\ y-4 \\ z-5\end{array}\right] . \overrightarrow{\text { By }} \overrightarrow{P_{2} P}=$ $\frac{1}{4} \vec{P}_{2} P_{1}$, we get

$$
\begin{aligned}
& x-3=\frac{1}{4}(-2) \\
& y-4=\frac{1}{4}(-2) \\
& z-5=\frac{1}{4}(-6)
\end{aligned}
$$

and $(x, y, z)=\left(\frac{5}{2}, \frac{7}{2}, \frac{7}{2}\right)$.
4. (a) Is $\vec{w}=\left[\begin{array}{l}1 \\ 10\end{array}\right]$ a linear combination of $\vec{u}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$?
(b) Can every vector $\vec{w}=\left[\begin{array}{l}a \\ b\end{array}\right]$ be written as a linear combination of \vec{u} and \vec{v} ?

Solution: (a) Let $\vec{w}=k_{1} \vec{u}+k_{2} \vec{v}$. This gives

$$
\begin{aligned}
& 1=k_{1}+2 k_{2} \\
& 10=4 k_{1}+3 k_{2}
\end{aligned}
$$

Solving this system, we obtain

$$
k_{1}=\frac{17}{5}, k_{2}=\frac{-6}{5}
$$

Therefore \vec{w} is a linear combination of \vec{u} and \vec{v}.
(b) SimilarlyLet $\vec{w}=k_{1} \vec{u}+k_{2} \vec{v}$. We have

$$
a=k_{1}+2 k_{2}, \quad b=4 k_{1}+3 k_{2} .
$$

Solving this system, we obtain

$$
k_{2}=\frac{4 a-b}{5}, \quad k_{1}=a-2 k_{2}=a-\frac{2(4 a-b)}{5}=\frac{-3 a+2 b}{5} .
$$

This shows that for any a and b, we can find k_{1} and k_{2} so that \vec{w} is a linear combination of \vec{u} and \vec{v}.
5. In each of the following case, either express p as a linear combination of u, v, w, or explain why there is no such linear combination.
(a) $p=\left[\begin{array}{l}4 \\ 5 \\ 3\end{array}\right], u=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], w=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(b) $p=\left[\begin{array}{l}-1 \\ 2 \\ 4 \\ 0\end{array}\right], u=\left[\begin{array}{l}3 \\ 7 \\ 0 \\ -4\end{array}\right], v=\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 9\end{array}\right], w=\left[\begin{array}{l}3 \\ 1 \\ 4 \\ 5\end{array}\right]$

Solution: (a) Let $\bar{p}=k_{1} \vec{u}+k_{2} \vec{v}+k_{3} \vec{w}$. We have

$$
\begin{aligned}
& 4=k_{1}+k_{2}+k_{3} \\
& 5=k_{2}+k_{3} \\
& 3=k_{3} .
\end{aligned}
$$

Therefore we have $k_{1}=-1, k_{2}=2, k_{3}=3$.
(b) Let $\bar{p}=k_{1} \vec{u}+k_{2} \vec{v}+k_{3} \vec{w}$. We have

$$
\begin{aligned}
& -1=3 k_{1}+3 k_{3} \\
& 2=7 k_{1}+2 k_{2}+k_{3} \\
& 4=4 k_{3} \\
& 0=-4 k_{1}+9 k_{2}+5 k_{3}
\end{aligned}
$$

There is no solution for this system. Therefore \vec{p} is not linear combination of \vec{u}, \vec{v} and \vec{w}.
[3] 6. Let \vec{u}, \vec{v} and \vec{w} be vectors. Show that any linear combination of \vec{u}, \vec{v} is also a linear combination of $-2 \vec{u}, 3 \vec{v}$ and \vec{w}.
solution: Suppose that \vec{x} is a linear combination of \vec{u} and \vec{v}, i.e.,

$$
\vec{x}=k_{1} \vec{u}+k_{2} \vec{v}
$$

for some k_{1} and k_{2}. Then

$$
\vec{x}=c_{1}(-2 \vec{u})+c_{2}(3 \vec{v})+c_{3} \vec{w}
$$

with

$$
c_{1}=\frac{k_{1}}{-2}, \quad c_{2}=\frac{k_{2}}{3}, \quad c_{3}=0 .
$$

Therefore, \vec{x} is also a linear combination of $-2 \vec{u}, 3 \vec{v}$ and \vec{w}.
[6] 7. In each case, determine whether \vec{u} is in the plane spanned by \vec{v} and \vec{w}.
(a) $\vec{u}=\left[\begin{array}{l}-5 \\ 0 \\ 6\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right] \quad \vec{w}=\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]$
(b) $\vec{u}=\left[\begin{array}{l}6 \\ 7\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}3 \\ 5\end{array}\right] \quad \vec{w}=\left[\begin{array}{l}4 \\ 7\end{array}\right]$

Solution: (a) Suppose that $\vec{u}=k_{1} \vec{v}+k_{2} \vec{w}$,i.e.,

$$
\left\{\begin{array}{l}
-5=-k_{1}+3 k_{2} \\
0=2 k_{1}+4 k_{2} \\
6=3 k_{1}
\end{array}\right.
$$

this system has a solution $k_{1}=2, k_{2}=-1 . \vec{u}$ is in the plane spanned by \vec{v} and \vec{w}.
(b) Suppose that $\vec{u}=k_{1} \vec{v}+k_{2} \vec{w}$,i.e.,

$$
\left\{\begin{array}{l}
6=3 k_{1}+4 k_{2} \\
7=5 k_{1}+7 k_{2}
\end{array}\right.
$$

We get $k_{1}=14, k_{2}=-9 . \vec{u}$ is in the plane spanned by \vec{v} and \vec{w}.

