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a b s t r a c t

We study the existence of forced traveling waves and gap formations for the lattice
Lotka–Volterra competition system in a shifting habitat. By virtue of upper–lower
solution method, we establish that the system admits a forced wave provided that
the shifting speed of climate change falls in a certain interval. When the shifting
speed is outside the range (except for the two endpoints), gap formations are then
shown by theoretical proofs.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are concerned with the existence of forced traveling wave solutions and gap formations
for the following lattice Lotka–Volterra competition system in a shifting habitat{

u′
j(t) = d1D2[uj ](t) + uj(t)[r1(j − ct) − uj(t) − vj(t)],

v′
j(t) = d2D2[vj ](t) + vj(t)[r2(j − ct) − vj(t) − uj(t)], t ∈ R+, j ∈ Z,

(1.1)

where D2[uj ](t) = uj+1(t)−2uj(t)+uj−1(t) and D2[vj ](t) = vj+1(t)−2vj(t)+vj−1(t). Here, uj(t) and vj(t)
stand for specific population densities at niches j and time t; d1 > 0 and d2 > 0 account for the diffusion
coefficients; the constant c ∈ R can be understood as the shifting speed of the edge of the habitat; r1(·)
and r2(·) represent the per capita growth rates. In this paper, they are assumed to satisfy the following
hypothesis:
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(H1) r1(·) is a continuous and decreasing function, and r2(·) is a continuous and increasing function.
Moreover, ri(·), i = 1, 2 satisfy the following asymptotic behaviors at infinity

r1(−∞) = K, r1(∞) = −L, and r2(−∞) = −L, r2(∞) = K, (1.2)

where K, L are two positive numbers.
Recently, there is an increasing number of literatures concerning the impacts of climate change on

dynamics of competitive species [1–3]. Biologically speaking, the surrounding environment or the spatial
resource is changeable, and is subject to a shift with a constant speed. For instance, Hu and Li [4] studied
the persistence and spreading speed for the following scalar lattice differential equation

ut(t, x) = d[u(t, x + 1) − 2u(t, x) + u(t, x − 1)] + r(x − ct)u − u2, (1.3)

where t > 0, and x ∈ Z or x ∈ R, by using the classical modified Bessel functions to the solutions of (1.3). For
extensions of (1.3) in which the difference operator is replaced by a nonlocal dispersal operator, a differential
operator, or an integral-difference formula, readers are further referred to [5–12] and the references therein.

System (1.1) can be viewed as a discrete version of the following competitive system{
ut = d1uxx + u(r1(x − ct) − u − a1v),
vt = d2vxx + v(r2(x − ct) − v − a2u), t ∈ R+, x ∈ R,

(1.4)

with a1 = a2 = 1, which has been widely investigated recently. Under the hypothesis (H1), Berestycki
et al. [13] proved the existence of a nontrivial forced wave of (1.4) in the special case when c = 0. Additionally,
they also investigated the gap formation caused by the climate change in the case c > cKP P , where
cKP P = 2

√
d1K is the classical Fisher–KPP invasion speed of u at the far end when the species v is absent.

Alternatively, by making a hypothesis that ri(·), i = 1, 2 share the same properties (see [14, Hypothesis 1]
and also [15]), which is slightly different from (H1), Zhang et al. [14] established the coexistence and
competitive exclusion of two competitors where the dynamics is completely different from our paper.

In this paper, we study the dynamics of (1.1) and establish two new results: (1) We prove the existence
of forced traveling waves of system (1.1), connecting the two semi-trivial equilibria (K, 0) and (0, K), with
the shifting speed in an interval −c̃0 < c < c̄0 (see Theorem 2.1) for two positive constants c̃0 and c̄0 that
are biologically important (link to the KPP speed of a single species). This result includes the special case
c = 0 where there exists a steady state solution satisfying the far end boundary conditions (1.2). (2) We
rigorously show gap formations in two other cases: c > c̄0 and c < −c̃0 (see Theorem 3.1).

2. Existence of forced waves of (1.1)

In this paper, a forced wave solution is referred to as a special solution in the form of

uj(t) = U(z), vj(t) = V (z), (2.1)

with z = j − ct. Here, c is the same constant speed given in the reaction terms in (1.1). Biologically, this
means that the invasion of the species can keep up the pace of the environment change. By substituting
(2.1) into (1.1), we can get the following wave profile system{

d1D2[U ] + cU ′ + U(r1(z) − U − V ) = 0,

d2D2[V ] + cV ′ + V (r2(z) − V − U) = 0, z ∈ R,
(2.2)

subject to the boundary conditions at infinity

U(−∞) = K, U(∞) = 0, and V (−∞) = 0, V (∞) = K. (2.3)

Now, we get ready to state our first result regarding the existence of forced waves of system (1.1).
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Theorem 2.1. Assume that −c̃0 < c < c̄0 with

c̃0 = min
µ>0

d2(eµ + e−µ − 2) + K

µ
> 0, c̄0 = min

µ>0

d1(eµ + e−µ − 2) + K

µ
> 0.

There exists a solution (U(z), V (z)) to the system (2.2) satisfying (2.3). Furthermore, U(z) and V (z) are
nonincreasing and nondecreasing functions respectively with respect to z ∈ R.

Proof. For clarity, we divide our proof into two steps.
Step 1. We intend to use the upper–lower solution method to prove two claims below.
Claim 1. Assume a monotonic and continuous function a(z) satisfies the limits at infinity: a(−∞) =

K, a(∞) = −L − K and c < c0 with

c0 = min
µ>0

d(eµ + e−µ − 2) + K

µ
> 0. (2.4)

Then there exists a solution w(z) > 0 for the following boundary problem{
dD2[w(z)] + cw′ + w(a(z) − w) = 0,

w(−∞) = K, w(∞) = 0.
(2.5)

Furthermore, w(z) is nonincreasing in z. Since w(z) is dependent on a(z) and d, we may define I(a, d) as
the solution w(z), i.e., I(a, d) := w(a, d)(z). Then I(a, d) is nondecreasing with respect to the function a.

Indeed, it is easy to check that the constant function w = K is an upper solution to the system (2.5).
As for the construction of a lower solution, it is relatively difficult. Since a(−∞) = K, there exist a z0 and
a small positive number ϵ > 0 so that a(z) ≥ K − ϵ for all z ≤ z0. We turn to consider the bistable wave
profile equation as follows

dD2[ŵ(z)] + ĉŵ′(z) + f(ŵ(z)) = 0, (2.6)

where

f(ŵ) =
{

ŵ(K − ϵ − ŵ), ŵ ≥ 0,

ŵ(−ϵ − ŵ), ŵ < 0.

It can be derived from Theorem 3.5 of [16] that (2.6) possesses a decreasing bistable wave solution ŵ with
wave speed ĉ = cϵ, satisfying

ŵ(−∞) = K − ϵ, ŵ(∞) = −ϵ. (2.7)

Note cϵ is continuous with respect to ϵ. Letting ϵ → 0+ in (2.6) leads to

dD2[w̃(z)] + ĉw̃′(z) + w̃(K − w̃) = 0, (2.8)

which admits non-negative traveling waves for ĉ ≥ c0, connecting K and 0, with the minimal speed c0 given
by (2.4). Clearly, for sufficiently small ϵ, the continuity of cϵ in ϵ gives that cϵ → c0. For the same z0 given
above, we suppose that ŵ(z) ≥ 0 for z ≤ z0 and ŵ(z) < 0 for z > z0 due to the fact that a translation of
ŵ(z) is still a solution. Then we are able to give a lower solution to (2.5) with

w(z) = max{ŵ(z), 0}, (2.9)

where ŵ(z) is the solution of (2.6) satisfying (2.7). Precisely, when ŵ(z) ≤ 0, w(z) = 0, the required
inequality for the lower solution follows naturally. When ŵ(z) > 0 (or equivalently, z < z0), we have
w(z) = ŵ(z). Plugging it into (2.5) with the assumption c < c0 (because of ĉ = cϵ → c0 as ϵ → 0+)
yields

dD2[ŵ(z)] + cŵ′ + ŵ(a(z) − ŵ) = (c − ĉ)ŵ′(z) + ŵ(a(z) − (K − ϵ)) ≥ 0, (2.10)
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which implies that w(z) is a lower solution of (2.5) for c < c0. By a procedure of upper–lower solution
method, we can prove the existence of w(z) to system (2.5) for c < c0. As for the monotonicity of I(a, d) in
a, it is easy to see from the positivity coefficient w(z) of a(z).

Claim 2. Assume that a continuous and monotonic function b(z) satisfies the limits at infinity: b(−∞) =
−L − K, b(∞) = K and c > −c0. Then there exists a solution ω(z) > 0 for the following boundary problem{

dD2[ω(z)] + c ω′ + ω(b(z) − ω) = 0,

ω(−∞) = 0, ω(∞) = K.
(2.11)

Furthermore, ω(z) is nondecreasing. Since the proof of Claim 2 is similar to Claim 1, we omit it here. We
mention here that we need the assumption c > −c0 to complete the proof of claim 2.

Step 2. We define alternately two sequences of functions as follows:

V0 := 0, U0 := I(r1, d1) , V1 := I(r2 − U0, d2), U1 := I(r1 − V1, d1) . . . ,

Vn+1 := I(r2 − Un, d2), Un+1 := I(r1 − Vn+1, d1).
(2.12)

It can be seen that Un(z) is nonincreasing and Vn(z) is nondecreasing with respect to z for each n ≥ 1,
thanks to Claim 1 and Claim 2 respectively. On the other hand, we also can deduce from the monotonicity
of I(a, d) in a that Un+1 ≤ Un, Vn+1 ≥ Vn, n ≥ 0. The boundedness of {Un} and {Vn} ensures that there
exist U and V so that Un → U, Vn → V pointwisely. In addition, it follows from the integral forms of{

− cU ′
n = d1D2[Un] + Un(r1(z) − Un − Vn),

− cV ′
n+1 = d2D2[Vn+1] + Vn+1(r2(z) − Vn+1 − Un),

(2.13)

that the pair of functions (U, V )(z) is a C1 solution to the system (2.2). Correspondingly, using Claims 1
and 2, we obtain the existence of U and V for −c̃0 < c < c0. Meanwhile, it is easy to see that U(z) is
nonincreasing and V (z) is nondecreasing in z.

We are left to show that (U, V )(z) satisfies the boundary conditions (2.3). Note that U(z) and V (z) are
bounded and monotone, so the limits of them at infinity exist. We denote the limits by U(∞), U(−∞), V (∞)
and V (−∞) respectively. Taking a look at (2.2), we obtain

U(−∞)(K − U(−∞) − V (−∞)) = 0, U(∞)(−L − U(∞) − V (∞)) = 0,

V (−∞)(−L − U(−∞) − V (−∞)) = 0, V (∞)(K − U(∞) − V (∞)) = 0,
(2.14)

and have U(∞) = 0 and V (−∞) = 0. Moreover, we can derive V (∞) > 0 by the monotonicity of the
sequence Vn in n. As a result, from the last equation of (2.14), we have V (∞) = K. As such, by Vn ≤ V ,
we have Un ≥ I(r1 − V, d). This means U(−∞) = K from the first equality of (2.14). Hence, the proof is
complete. ■

Remark 2.2. Claim 1 also holds if a(∞) = −L − K is replaced by a(∞) = −L. This fact is needed in the
construction of sequences defined in (2.12).

Remark 2.3. The existence or non-existence of forced wave of (2.2) in the critical cases c = c0 or c = −c0
remains open. Due to the fact that (2.2) is a coupled system, the ideas in [9, Theorem 2.1(i)] and/or
[12, Theorem 1.2] cannot be directly applied. However, we still conjecture that, for the system (2.2), no
forced traveling wave exists for the two critical cases mentioned above.

3. Gap formations

It is easy to verify that the function f(µ) = d1(eµ+e−µ−2)+K
µ is convex, and f(µ) can attain its minimal

value at the unique critical point µ̄. In this subsection, we consider the system (1.1) subject to the following
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initial conditions
u(0, j) = u0(j), v(0, j) = v0(j), for all j ∈ Z, (3.1)

which are assumed to satisfy
(H2) 0 ≤ u0(j) ≤ K, 0 ≤ v0(j) ≤ K and the support of u0(j) is bounded from above. Namely, there exists
an N so that u0(j) = 0 for all j ≥ N .

We have the following gap formation result.

Theorem 3.1. Assume c > c̄0 in (1.1) with initial data (3.1) satisfying (H2). We conclude that the unique
bounded solution of (1.1) satisfies

0 ≤ uj(t) ≤ K, 0 ≤ vj(t) ≤ K, for all t ≥ 0, j ∈ Z. (3.2)

Moreover, for all c1, c2 satisfying c̄0 < c1 < c2 < c, and for all constants b1, b2 ∈ R, we have

sup
j≥c1t+b1

uj(t) ≤ A1e−α1t, ∀t ≥ 0, (3.3)

and
sup

j≤c2t+b2
vj(t) ≤ A2e−α2t, ∀t ≥ 0, (3.4)

where the constants A1, α1 are positive and are only dependent on the parameters K, d1, c1, b1, N (see (3.6)),
the constants A2, α2 are positive and are only dependent on the parameters K, L, d2, c2, b2, γ, z0 (see (3.10)).

Proof. We firstly prove the estimate (3.3). Denote ū = ū(t, j) as the solution of the following equation

u′
j(t) = d1D2[uj ](t) + Kuj(t), (3.5)

subject to ū(0, j) = u0(j). One can verify directly that w(t, j) = Ke−µ̄(j−c̄0t−N) satisfies (3.5). As a result
of u0(j) ≤ w(0, j) and the comparison principle, we have uj(t) ≤ ū(t, j) ≤ w(t, j). This in turn gives

sup
j≥c1t+b1

uj(t) ≤ A1e−α1t, ∀t ≥ 0,

where
A1 = Ke−(b1−N)µ̄, α1 = (c1 − c̄0)µ̄. (3.6)

Thus, the proof of (3.3) is complete.
The proof of (3.4) is slightly different from the one of (3.3). Taking a view at the second equation of

(1.1), it follows from the maximum principle that vj(t) ≤ K for all t ≥ 0, j ∈ Z. Thanks to the limit
limz→−∞ r2(z) = −L and the monotonicity of r2(z), we know that there exists a number z0 so that
r2(z) ≤ −η (η satisfying 0 < η < L) for all z ≤ z0. Consequently, we can construct an auxiliary equation

v′
j(t) − d2D2[vj ](t) + ηvj(t) ≤ 0, j ≤ ct + z0, (3.7)

with vj(t) ≤ K. Now, we are going to build up an upper solution to the following equation

v′
j(t) − d2D2[vj ](t) + ηvj(t) = 0.

To begin with, select two positive numbers γ, µ such that −cµ − d2(eµ + e−µ − 2) + η ≥ 0, and 0 < γ ≤ η.
It is straightforward to check that the function defined as v̄j(t) = K(eµ(j−ct−z0) + e−γt) satisfies

v′
j(t) − d2D2[vj ](t) + ηvj(t) ≥ 0.
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This implies v̄j(t) is an upper solution. Additionally, we have vj(t) ≤ K < v̄j(t) for all j = [ct + z0], where
[·] stands for the integer function. Summing up the above analysis, one can get the following inequalities⎧⎪⎨⎪⎩

(v̄j(t) − vj(t))′ − d2D2[v̄j − vj ](t) + η(v̄j(t) − vj(t)) ≥ 0, j ≤ ct + z0,

v̄j(t) − vj(t) > 0, for all t > 0, j = [ct + z0],
v̄j(0) − vj(0) > 0, j ≤ z0.

(3.8)

Again, by use of the comparison principle, one can conclude that vj(t) ≤ v̄j(t) for all j ≤ ct+z0. In addition,
it is easy to see that c2t + b2 ≤ ct + z0 holds for all t > t0 by choosing t0 sufficiently large. Therefore,

sup
j≤c2t+b2

vj(t) ≤ sup
j≤c2t+b2

K(eµ(z−z0) + e−γt) ≤ A2e−α2t, ∀t ≥ t0, (3.9)

where
A2 = max{Ke(b2−z0)µ, K}, α2 = min{(c − c2)µ, γ}. (3.10)

To extend the range of t to [0, t0), it is only needed to increase suitably the constant A2. As such, the proof
of (3.3) is also complete. ■

Finally, we show that the gap formation described by (3.3) and (3.4) also exists for c < −c̃0 with initial
data (3.1) satisfying

(H3) 0 ≤ u0(j) ≤ K, 0 ≤ v0(j) ≤ K and the support of v0(j) is bounded from below. Namely, there exists
N ′ so that v0(j) = 0 for all j ≤ −N ′.

Theorem 3.2. Assume c < −c̃0 in (1.1) with initial data (3.1) satisfying (H3). We conclude that the unique
bounded solution of (1.1) satisfies

0 ≤ uj(t) ≤ K, 0 ≤ vj(t) ≤ K, for all t ≥ 0, j ∈ Z.

Moreover, for all c̃1, c̃2 satisfying c < c̃1 < c̃2 < −c̃0, and for all constants b̃1, b̃2 ∈ R, there exist constants
α̃1, α̃2 such that

sup
j≥c̃1t+b̃1

uj(t) ≤ Ã1e−α̃1t, and sup
j≤c̃2t+b̃2

vj(t) ≤ Ã2e−α̃2t, ∀t ≥ 0.

4. Conclusions and discussion

We have proved the existence of forced waves of (1.1) by means of two critical claims, plus an alternative
iteration scheme. This enables us to establish new results for the wave speed in an interval. While the forced
speed is beyond the interval (except for the two endpoints), it is interesting to show that gap formations
appear as the consequence of climate change. It is worth mentioning that our method also can be used to
study the continuous models [13] which we will further consider and extend in another paper (including the
uniqueness and stability of the forced waves).
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