Due: Friday, September 28
[5] 1. Let $\vec{u}=\left[\begin{array}{c}-3 \\ 4 \\ 0 \\ 12\end{array}\right]$. Find a unit vector in the direction of \vec{u} and a vector of length 4 in the direction opposite to \vec{u}.
Solution: $\|\vec{u}\|=\sqrt{(-3)^{2}+4^{2}+0^{2}+12^{2}}=\sqrt{169}=13$

$$
\frac{1}{\|\vec{u}\|} \vec{u}=\frac{1}{13}\left[\begin{array}{c}
-3 \\
4 \\
0 \\
12
\end{array}\right] \text { is a unit vector in the direction of } \vec{u} \text {. }
$$

A vector of norm 4 in the direction opposite to \vec{u} would be

$$
-\frac{4}{13} \vec{u}=-\frac{4}{13}\left[\begin{array}{c}
-3 \\
4 \\
0 \\
12
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{13} \\
-\frac{16}{13} \\
0 \\
-\frac{48}{13}
\end{array}\right] .
$$

[5] 2. Find all vectors \vec{u} that are parallel to $\vec{v}=\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]$ and satisfy $\|\vec{u}\|^{2}=2\|\vec{v}\|^{2}$.
Solution: Let $\vec{u}=k \vec{v}$, so that \vec{u} is parallel to \vec{v}. Then $\|\vec{u}\|^{2}=k^{2}\|\vec{v}\|^{2}$. To get what we want, we need $k= \pm \sqrt{2}$

Therefore $\vec{u}=\sqrt{2}\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]=\left[\begin{array}{c}2 \sqrt{2} \\ -2 \sqrt{2} \\ 4 \sqrt{2}\end{array}\right]$ or $\vec{u}=-\sqrt{2}\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]=\left[\begin{array}{c}-2 \sqrt{2} \\ 2 \sqrt{2} \\ -4 \sqrt{2}\end{array}\right]$.
[10] 3. (a) Let \vec{u} and \vec{v} be vectors of magnitude 2 and 5 , respectively, and suppose that $\vec{u} \cdot \vec{v}=-3$. Find $(\vec{u}-\vec{v}) \cdot(2 \vec{u}-3 \vec{v})$ and $\|\vec{u}+\vec{v}\|$.
(b) The two vectors $3 \vec{u}+\vec{v}$ and $\vec{u}-4 \vec{v}$ are perpendicular. Find the angle between \vec{u} and \vec{v} if $\|\vec{u}\|=2\|\vec{v}\|$.
Solution: (a)

$$
\begin{aligned}
(\vec{u}-\vec{v}) \cdot(2 \vec{u}-3 \vec{v}) & =2\|\vec{u}\|^{2}-5 \vec{u} \cdot \vec{v}+3\|\vec{v}\|^{2} \\
& =2(4)-5(-3)+3(25)=98 .
\end{aligned}
$$

From $\|\vec{u}+\vec{v}\|^{2}=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}=2^{2}+2(-3)+5^{2}=23$, Therefore $\|\vec{u}+\vec{v}\|=\sqrt{23}$.
(b) $(3 \vec{u}+\vec{v}) \cdot(\vec{u}-4 \vec{v})=3\|\vec{u}\|^{2}-11 \vec{u} \cdot \vec{v}-4\|\vec{v}\|^{2}=0$

Since $\|\vec{u}\|=2\|\vec{v}\|$, then we have $8\|\vec{v}\|^{2}-11 \vec{u} \cdot \vec{v}=0$.
$\Longrightarrow \vec{u} \cdot \vec{v}=\frac{8}{11}\|\vec{v}\|^{2}$ and $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \vec{v} \|}=\frac{\frac{8}{11}\|\vec{v}\|^{2}}{2\|\vec{v}\|\|\vec{v}\|}=\frac{4}{11}, \Longrightarrow \theta=\cos ^{-1}\left(\frac{4}{11}\right) \approx 1.20$ radians.
[5] 4. Let $\vec{u}=\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}2 k-3 \\ 3 k-k^{2} \\ 3\end{array}\right]$. Determine all values of k for which \vec{u} and \vec{v} are orthogonal.
Solution: $\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right] \cdot\left[\begin{array}{c}2 k-3 \\ 3 k-k^{2} \\ 3\end{array}\right]=0 \Longleftrightarrow 2 k-3-\left(3 k-k^{2}\right)-9=0 \Longleftrightarrow k^{2}-k-12=$ $0 \Longleftrightarrow k=4, k=-3$
[5] 5. Find all real numbers x such that $\vec{u}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ x \\ 2\end{array}\right]$ are at an angle of $\frac{\pi}{3}$.
Solution: $\cos \frac{\pi}{3}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{2-x+2}{\sqrt{6} \sqrt{1+x^{2}+4}}$

$$
\frac{1}{2}=\frac{4-x}{\sqrt{6} \sqrt{5+x^{2}}} \Longrightarrow x^{2}+16 x-17=0 \Longrightarrow x=-17, x=1
$$

[5] 6. Let $\vec{u}=\left[\begin{array}{c}3 \\ -6 \\ 3\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(a) Show that \vec{u} is orthogonal to $\vec{v}-\vec{w}$.
(b) Show that \vec{u} is orthogonal to $a \vec{v}+b \vec{w}$ for any scalars a and b.

Solution: (a) $\vec{v}-\vec{w}=\left[\begin{array}{c}0 \\ -2 \\ -4\end{array}\right]$. Since $\vec{u} \cdot(\vec{v}-\vec{w})=0+12-12=0, \vec{u}$ is orthogonal to $\vec{v}-\vec{w}$.
(b) $a \vec{v}+b \vec{w}=\left[\begin{array}{c}a+b \\ 2 b \\ 3 b-a\end{array}\right]$.
$\Longrightarrow \vec{u} \cdot(a \vec{v}+b \vec{w})=3(a+b)-6(2 b)+3(3 b-a)=0$
Therefore \vec{u} is orthogonal to $a \vec{v}+b \vec{w}$.
Alternatively, $\vec{u} \cdot \vec{v}=3+0-3=0, \vec{u} \cdot \vec{w}=3-12+9=0$, hence $\vec{u} \cdot(a \vec{v}+b \vec{w})=$ $a(\vec{u} \cdot \vec{v})+b(\vec{u} \cdot \vec{w})=a(0)+b(0)=0$.
[5] 7. Let $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and \vec{v} be a unit vector in the plane. What are the possible values of $\|\vec{u}+\vec{v}\|$? Give a unit vector \vec{v} such that $\|\vec{u}+\vec{v}\|=\sqrt{3}$.

Solution: We can compute $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}=2+2 \vec{u} \cdot \vec{v}$, since \vec{u} and \vec{v} are unit vectors. From the Cauchy-Schwarz inequality, we have that $|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\|=1$. Thus, $-1 \leq \vec{u} \cdot \vec{v} \leq 1$, and $0 \leq\|\vec{u}+\vec{v}\|^{2} \leq 4$. This gives

$$
0 \leq\|\vec{u}+\vec{v}\| \leq 2 .
$$

Note that both extremes can occur: if $\vec{v}=-\vec{u},\|\vec{u}+\vec{v}\|=0$, and if $\vec{v}=\vec{u}$, then $\|\vec{u}+\vec{v}\|=2$.
If $\|\vec{u}+\vec{v}\|^{2}=3$, then $\vec{u} \cdot \vec{v}=1 / 2$. Since $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, this gives that $v_{1}=1 / 2$; in order for \vec{v} to be a unit vector, we must have $v_{2}^{2}=1-v_{1}^{2}=3 / 4$, giving $\vec{v}=\left[\begin{array}{c}1 / 2 \\ \sqrt{3} / 2\end{array}\right]$ or $\vec{v}=\left[\begin{array}{c}1 / 2 \\ -\sqrt{3} / 2\end{array}\right]$
[5] 8. Give vectors \vec{u}, \vec{v}, and \vec{w} such that $\vec{u} \cdot \vec{v}=0$ and $\vec{v} \cdot \vec{w}=0$, but $\vec{u} \cdot \vec{w} \neq 0$.
Solution: There are lots of possibilities. One is to take $\vec{v}=\overrightarrow{0}$, and $\vec{u}=\vec{w}=\vec{\imath}$. For any nonzero vector, \vec{u}, choosing \vec{v} so that $\vec{u} \cdot \vec{v}=0$ and $\vec{w}=k \vec{u}$ for any nonzero constant k will work.
[5] 9. Given unit vector \vec{u}, is it possible to find a vector \vec{v} such that $\vec{u} \cdot \vec{v}=-3$ and $\|\vec{v}\|=2$? Give an example or explain why this can't be done.
Solution: The Cauchy-Schwarz inequality states that $|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\|$. Given the information in the problem, this would require that $3 \leq 2$, which is not true. Thus, no such vector \vec{v} can be found.

