Due: Friday, September 28

[5] 1. Let $\vec{u} = \begin{bmatrix} -3\\4\\0\\12 \end{bmatrix}$. Find a unit vector in the direction of \vec{u} and a vector of length 4 in the

direction opposite to \vec{u} .

Solution: $\|\vec{u}\| = \sqrt{(-3)^2 + 4^2 + 0^2 + 12^2} = \sqrt{169} = 13$

$$\frac{1}{\|\vec{u}\|}\vec{u} = \frac{1}{13} \begin{bmatrix} -3\\4\\0\\12 \end{bmatrix}$$
 is a unit vector in the direction of \vec{u} .

A vector of norm 4 in the direction opposite to \vec{u} would be

$$-\frac{4}{13}\vec{u} = -\frac{4}{13} \begin{bmatrix} -3\\4\\0\\12 \end{bmatrix} = \begin{bmatrix} \frac{12}{13}\\-\frac{16}{13}\\0\\-\frac{48}{13} \end{bmatrix}.$$

[5] 2. Find all vectors \vec{u} that are parallel to $\vec{v} = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$ and satisfy $\|\vec{u}\|^2 = 2\|\vec{v}\|^2$.

Solution: Let $\vec{u} = k\vec{v}$, so that \vec{u} is parallel to \vec{v} . Then $\|\vec{u}\|^2 = k^2 \|\vec{v}\|^2$. To get what we want, we need $k = \pm \sqrt{2}$

Therefore
$$\vec{u} = \sqrt{2} \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2\sqrt{2} \\ -2\sqrt{2} \\ 4\sqrt{2} \end{bmatrix}$$
 or $\vec{u} = -\sqrt{2} \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2\sqrt{2} \\ 2\sqrt{2} \\ -4\sqrt{2} \end{bmatrix}$.

- [10] 3. (a) Let \vec{u} and \vec{v} be vectors of magnitude 2 and 5, respectively, and suppose that $\vec{u} \cdot \vec{v} = -3$. Find $(\vec{u} \vec{v}) \cdot (2\vec{u} 3\vec{v})$ and $||\vec{u} + \vec{v}||$.
 - (b) The two vectors $3\vec{u} + \vec{v}$ and $\vec{u} 4\vec{v}$ are perpendicular. Find the angle between \vec{u} and \vec{v} if $||\vec{u}|| = 2||\vec{v}||$.

Solution: (a)

$$(\vec{u} - \vec{v}) \cdot (2\vec{u} - 3\vec{v}) = 2\|\vec{u}\|^2 - 5\vec{u} \cdot \vec{v} + 3\|\vec{v}\|^2$$

= $2(4) - 5(-3) + 3(25) = 98.$

From $\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2 = 2^2 + 2(-3) + 5^2 = 23$, Therefore $\|\vec{u} + \vec{v}\| = \sqrt{23}$.

(b)
$$(3\vec{u} + \vec{v}) \cdot (\vec{u} - 4\vec{v}) = 3\|\vec{u}\|^2 - 11\vec{u} \cdot \vec{v} - 4\|\vec{v}\|^2 = 0$$

Since $\|\vec{u}\| = 2\|\vec{v}\|$, then we have $8\|\vec{v}\|^2 - 11\vec{u} \cdot \vec{v} = 0$.

$$\implies \vec{u} \cdot \vec{v} = \frac{8}{11} ||\vec{v}||^2 \text{ and } \cos \theta = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||} = \frac{\frac{8}{11} ||\vec{v}||^2}{2||\vec{v}|| ||\vec{v}||} = \frac{4}{11}, \implies \theta = \cos^{-1}(\frac{4}{11}) \approx 1.20$$
 radians.

[5] 4. Let
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 2k-3 \\ 3k-k^2 \\ 3 \end{bmatrix}$. Determine all values of k for which \vec{u} and \vec{v} are orthogonal.

Solution:
$$\begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} 2k - 3 \\ 3k - k^2 \\ 3 \end{bmatrix} = 0 \iff 2k - 3 - (3k - k^2) - 9 = 0 \iff k^2 - k - 12 = 0 \iff k = 4, k = -3$$

[5] 5. Find all real numbers
$$x$$
 such that $\vec{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ x \\ 2 \end{bmatrix}$ are at an angle of $\frac{\pi}{3}$.

Solution:
$$\cos \frac{\pi}{3} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{2 - x + 2}{\sqrt{6}\sqrt{1 + x^2 + 4}}$$

$$\frac{1}{2} = \frac{4 - x}{\sqrt{6}\sqrt{5 + x^2}} \Longrightarrow x^2 + 16x - 17 = 0 \Longrightarrow x = -17, x = 1$$

[5] 6. Let
$$\vec{u} = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

- (a) Show that \vec{u} is orthogonal to $\vec{v} \vec{w}$.
- (b) Show that \vec{u} is orthogonal to $a\vec{v} + b\vec{w}$ for any scalars a and b.

Solution: (a)
$$\vec{v} - \vec{w} = \begin{bmatrix} 0 \\ -2 \\ -4 \end{bmatrix}$$
. Since $\vec{u} \cdot (\vec{v} - \vec{w}) = 0 + 12 - 12 = 0$, \vec{u} is orthogonal to $\vec{v} - \vec{w}$.

(b)
$$a\vec{v} + b\vec{w} = \begin{bmatrix} a+b\\2b\\3b-a \end{bmatrix}$$
.

$$\implies \vec{u} \cdot (a\vec{v} + b\vec{w}) = 3(a+b) - 6(2b) + 3(3b-a) = 0$$

Therefore \vec{u} is orthogonal to $a\vec{v} + b\vec{w}$.

Alternatively, $\vec{u} \cdot \vec{v} = 3 + 0 - 3 = 0$, $\vec{u} \cdot \vec{w} = 3 - 12 + 9 = 0$, hence $\vec{u} \cdot (a\vec{v} + b\vec{w}) = a(\vec{u} \cdot \vec{v}) + b(\vec{u} \cdot \vec{w}) = a(0) + b(0) = 0$.

[5] 7. Let $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and \vec{v} be a unit vector in the plane. What are the possible values of $\|\vec{u} + \vec{v}\|$? Give a unit vector \vec{v} such that $\|\vec{u} + \vec{v}\| = \sqrt{3}$.

Solution: We can compute $\|\vec{u}+\vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u}\cdot\vec{v} + \|\vec{v}\|^2 = 2 + 2\vec{u}\cdot\vec{v}$, since \vec{u} and \vec{v} are unit vectors. From the Cauchy-Schwarz inequality, we have that $|\vec{u}\cdot\vec{v}| \leq \|\vec{u}\|\|\vec{v}\| = 1$. Thus, $-1 \leq \vec{u}\cdot\vec{v} \leq 1$, and $0 \leq \|\vec{u}+\vec{v}\|^2 \leq 4$. This gives

$$0 \le \|\vec{u} + \vec{v}\| \le 2.$$

Note that both extremes can occur: if $\vec{v} = -\vec{u}$, $||\vec{u} + \vec{v}|| = 0$, and if $\vec{v} = \vec{u}$, then $||\vec{u} + \vec{v}|| = 2$.

If $\|\vec{u} + \vec{v}\|^2 = 3$, then $\vec{u} \cdot \vec{v} = 1/2$. Since $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, this gives that $v_1 = 1/2$; in order

for \vec{v} to be a unit vector, we must have $v_2^2 = 1 - v_1^2 = 3/4$, giving $\vec{v} = \begin{bmatrix} 1/2 \\ \sqrt{3}/2 \end{bmatrix}$ or

$$\vec{v} = \begin{bmatrix} 1/2 \\ -\sqrt{3}/2 \end{bmatrix}$$

[5] 8. Give vectors \vec{u} , \vec{v} , and \vec{w} such that $\vec{u} \cdot \vec{v} = 0$ and $\vec{v} \cdot \vec{w} = 0$, but $\vec{u} \cdot \vec{w} \neq 0$.

Solution: There are lots of possibilities. One is to take $\vec{v} = \vec{0}$, and $\vec{u} = \vec{w} = \vec{i}$. For any nonzero vector, \vec{u} , choosing \vec{v} so that $\vec{u} \cdot \vec{v} = 0$ and $\vec{w} = k\vec{u}$ for any nonzero constant k will work.

[5] 9. Given unit vector \vec{u} , is it possible to find a vector \vec{v} such that $\vec{u} \cdot \vec{v} = -3$ and $||\vec{v}|| = 2$? Give an example or explain why this can't be done.

Solution: The Cauchy-Schwarz inequality states that $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| ||\vec{v}||$. Given the information in the problem, this would require that $3 \leq 2$, which is not true. Thus, no such vector \vec{v} can be found.