Due: Friday, September 28

- [5] 1. Let $\vec{u} = \begin{bmatrix} -3 \\ 4 \\ 0 \\ 12 \end{bmatrix}$. Find a unit vector in the direction of \vec{u} and a vector of length 4 in the direction opposite to \vec{u} .
- [5] 2. Find all vectors \vec{u} that are parallel to $\vec{v} = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$ and satisfy $\|\vec{u}\|^2 = 2\|\vec{v}\|^2$.
- [10] 3. (a) Let \vec{u} and \vec{v} be vectors of magnitude 2 and 5, respectively, and suppose that $\vec{u} \cdot \vec{v} = -3$. Find $(\vec{u} \vec{v}) \cdot (2\vec{u} 3\vec{v})$ and $||\vec{u} + \vec{v}||$.
 - (b) The two vectors $3\vec{u} + \vec{v}$ and $\vec{u} 4\vec{v}$ are perpendicular. Find the angle between \vec{u} and \vec{v} if $||\vec{u}|| = 2||\vec{v}||$.
- [5] 4. Let $\vec{u} = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 2k-3 \\ 3k-k^2 \\ 3 \end{bmatrix}$. Determine all values of k for which \vec{u} and \vec{v} are orthogonal.
- [5] 5. Find all real numbers x such that $\vec{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ x \\ 2 \end{bmatrix}$ are at an angle of $\frac{\pi}{3}$.
- [5] 6. Let $\vec{u} = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
 - (a) Show that \vec{u} is orthogonal to $\vec{v} \vec{w}$.
 - (b) Show that \vec{u} is orthogonal to $a\vec{v} + b\vec{w}$ for any scalars a and b.
- [5] 7. Let $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and \vec{v} be a unit vector in the plane. What are the possible values of $\|\vec{u} + \vec{v}\|$? Give a unit vector \vec{v} such that $\|\vec{u} + \vec{v}\| = \sqrt{3}$.
- [5] 8. Give vectors \vec{u} , \vec{v} , and \vec{w} such that $\vec{u} \cdot \vec{v} = 0$ and $\vec{v} \cdot \vec{w} = 0$, but $\vec{u} \cdot \vec{w} \neq 0$.
- [5] 9. Given unit vector \vec{u} , is it possible to find a vector \vec{v} such that $\vec{u} \cdot \vec{v} = -3$ and $||\vec{v}|| = 2$? Give an example or explain why this can't be done.