Due: Friday, September 28

[5] 1. Let $\vec{u}=\left[\begin{array}{c}-3 \\ 4 \\ 0 \\ 12\end{array}\right]$. Find a unit vector in the direction of \vec{u} and a vector of length 4 in the direction opposite to \vec{u}.
[5] 2. Find all vectors \vec{u} that are parallel to $\vec{v}=\left[\begin{array}{c}2 \\ -2 \\ 4\end{array}\right]$ and satisfy $\|\vec{u}\|^{2}=2\|\vec{v}\|^{2}$.
[10] 3. (a) Let \vec{u} and \vec{v} be vectors of magnitude 2 and 5 , respectively, and suppose that $\vec{u} \cdot \vec{v}=-3$. Find $(\vec{u}-\vec{v}) \cdot(2 \vec{u}-3 \vec{v})$ and $\|\vec{u}+\vec{v}\|$.
(b) The two vectors $3 \vec{u}+\vec{v}$ and $\vec{u}-4 \vec{v}$ are perpendicular. Find the angle between \vec{u} and \vec{v} if $\|\vec{u}\|=2\|\vec{v}\|$.
[5] 4. Let $\vec{u}=\left[\begin{array}{c}1 \\ -1 \\ -3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}2 k-3 \\ 3 k-k^{2} \\ 3\end{array}\right]$. Determine all values of k for which \vec{u} and \vec{v} are orthogonal.
[5] 5. Find all real numbers x such that $\vec{u}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ x \\ 2\end{array}\right]$ are at an angle of $\frac{\pi}{3}$.
[5] 6. Let $\vec{u}=\left[\begin{array}{c}3 \\ -6 \\ 3\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(a) Show that \vec{u} is orthogonal to $\vec{v}-\vec{w}$.
(b) Show that \vec{u} is orthogonal to $a \vec{v}+b \vec{w}$ for any scalars a and b.
[5] 7. Let $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and \vec{v} be a unit vector in the plane. What are the possible values of $\|\vec{u}+\vec{v}\|$? Give a unit vector \vec{v} such that $\|\vec{u}+\vec{v}\|=\sqrt{3}$.
[5] 8. Give vectors \vec{u}, \vec{v}, and \vec{w} such that $\vec{u} \cdot \vec{v}=0$ and $\vec{v} \cdot \vec{w}=0$, but $\vec{u} \cdot \vec{w} \neq 0$.
[5] 9. Given unit vector \vec{u}, is it possible to find a vector \vec{v} such that $\vec{u} \cdot \vec{v}=-3$ and $\|\vec{v}\|=2$? Give an example or explain why this can't be done.

