[10] 1. Find the determinant by reducing to triangular form for the following matrices.
(a) $A=\left[\begin{array}{rrr}0 & -1 & 2 \\ 2 & 1 & 4 \\ 1 & -1 & 5\end{array}\right]$.
(b) $A=\left[\begin{array}{cccc}1 & -1 & 2 & -2 \\ 2 & 5 & 3 & 1 \\ -1 & 0 & 2 & -1 \\ 3 & 1 & 2 & 0\end{array}\right]$.
[10] 2. Find the matrix M of minors and the matrix C of cofactors, compute the product $A C^{T}$ and $C^{T} A$, calculate the determinant of A, and find A^{-1} if possible, for the following matrices
(a): $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$.
(b): $A=\left[\begin{array}{rrr}-1 & 2 & 5 \\ 3 & 5 & 2 \\ 4 & 8 & 9\end{array}\right]$.
[10] 3. Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -3 & 5 \\ 6 & 4 & -1\end{array}\right]$.
(a): Find the determinant of A with a Laplace expansion down the first column.
(b): Find the determinant of A with a Laplace expansion down the second row.
[5] 4. Let A and B be 4×4 matrices with $\operatorname{det}(A)=3$ and $\operatorname{det}(B)=2$. Find the following determinants:
(a) $\operatorname{det}\left(B^{-1}\right), \operatorname{det}\left(A^{3}\right)$, and $\operatorname{det}(-4 B)$;
(b) $\operatorname{det}\left(3 B^{-1} A^{2} B^{3} A^{-1} B^{t}\right)$.
[5] 5. Let $A=\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]$. Given that $\operatorname{det}(A)=-5$, evaluate the following determinant:

$$
\left|\begin{array}{ccc}
a+2 x & a+p & 2 p+x \\
b+2 y & b+q & 2 q+y \\
c+2 z & c+r & 2 r+z
\end{array}\right| .
$$

[5] 6. Calculate the determinant of $\left[\begin{array}{rrrrr}1 & 2 & 3 & 4 & 0 \\ 2 & 6 & 5 & 14 & 8 \\ 13 & 12 & 12 & 13 & 2 \\ 4 & 5 & 8 & 3 & 5 \\ 5 & 10 & 15 & 20 & 0\end{array}\right]$.
[45]

