Assignment 8

Due: Friday, Nov 22.

[10] 1. Find the determinant by reducing to triangular form for the following matrices.

(a)
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & 1 & 4 \\ 1 & -1 & 5 \end{bmatrix}$$
.
(b) $A = \begin{bmatrix} 1 & -1 & 2 & -2 \\ 2 & 5 & 3 & 1 \\ -1 & 0 & 2 & -1 \\ 3 & 1 & 2 & 0 \end{bmatrix}$.

[10] 2. Find the matrix M of minors and the matrix C of cofactors, compute the product AC^T and $C^T A$, calculate the determinant of A, and find A^{-1} if possible, for the following matrices

(a):
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$
.
(b): $A = \begin{bmatrix} -1 & 2 & 5 \\ 3 & 5 & 2 \\ 4 & 8 & 9 \end{bmatrix}$.
3. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 5 \\ 6 & 4 & -1 \end{bmatrix}$.

[10]

(a): Find the determinant of A with a Laplace expansion down the first column.

- (b): Find the determinant of A with a Laplace expansion down the second row.
- [5] 4. Let A and B be 4×4 matrices with det(A) = 3 and det(B) = 2. Find the following determinants:

(a) det
$$(B^{-1})$$
, det (A^3) , and det $(-4B)$;
(b) det $(3B^{-1}A^2B^3A^{-1}B^t)$.

[5] 5. Let
$$A = \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix}$$
. Given that $det(A) = -5$, evaluate the following determinant:
$$\begin{vmatrix} a+2x & a+p & 2p+x \\ b+2y & b+q & 2q+y \\ c+2z & c+r & 2r+z \end{vmatrix}$$
.

		1	2	3	4	0	
[5]	6. Calculate the determinant of	2	6	5	14	8	
		13	12	12	13	2	•
		4	5	8	3	5	
		5	10	15	20	0	
		-				_	

[45]