Due: Thursday, Nov. 8
[7] 1. Find the inverse of A and then solve the system is $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 0 & 1\end{array}\right]$, $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}8 \\ 5 \\ -7\end{array}\right]$.
[5] 2. Determine if A is invertible and if so find A^{-1} :
$A=\left[\begin{array}{rrr}0 & -1 & 2 \\ 2 & 1 & 4 \\ 1 & -1 & 5\end{array}\right]$.
[3] 3. Which of the following matrices are elementary matrices, explain why.
(a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
[8] 4. Let $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{ll}6 & 2 \\ 2 & 4\end{array}\right]$, and $C=\left[\begin{array}{cc}4 & -2 \\ -6 & 3\end{array}\right]$. Solve each of the following matrix equations:
(a) $A X+B=C$
(b) $X A+C=X$
[6] 5. For each of the following pairs of matrices, find an elementary matrix E such that $E A=B$.
(a) $A=\left[\begin{array}{cc}-9 & -1 \\ 5 & 3\end{array}\right], B=\left[\begin{array}{cc}-4 & 2 \\ 5 & 3\end{array}\right]$.
(b) $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ -2 & 4 & 5 \\ 3 & 1 & 4\end{array}\right], B=\left[\begin{array}{ccc}2 & 1 & 3 \\ 3 & 1 & 4 \\ -2 & 4 & 5\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}4 & -2 & 3 \\ 1 & 0 & 2 \\ -2 & 3 & 1\end{array}\right], B=\left[\begin{array}{ccc}4 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 3 & 5\end{array}\right]$
[8] 6. Let $A=\left[\begin{array}{cc}0 & -1 \\ 2 & 1\end{array}\right]$.
(a) Express A as a product of elementary matrices.
(b) Express A^{-1} as a product of elementary matrices.

