Assignment 4

Due: Thursday, Oct. 11

[5] 1. Let $\vec{u} = \begin{bmatrix} 2\\ 2\\ 3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$. Find the projection of \vec{u} onto \vec{v} ; and the projection of \vec{v} onto \vec{u} respectively.

[10] 2. (a) Find two orthogonal vectors in the plane x + y - 2z = 0. (b) Find the projection of $\vec{u} = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$ onto the plane x + y - 2z = 0.

[5] 3. Calculate the distance from point P(1,2,1) to the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1+t \\ 2-2t \\ 2t-1 \end{bmatrix}$.

[5] 4. Calculate the distance from point P(1,2,1) to the plane 2x - y + 2z = 1.

[5] 5. Are vectors
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\vec{x} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ linearly independent?

[10] 6. Let
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

(a) Show that \vec{u} , \vec{v} and \vec{w} are linearly independent.

(b) Show that any 3-dimensional vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ can be written as a linear combination of \vec{u} , \vec{v} and \vec{w} .

[10] 7. Let
$$\vec{u} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

(a) Are \vec{u} , \vec{v} and \vec{w} linearly independent?

(b) Can any 3-dimensional vector be written as a linear combination of \vec{u} , \vec{v} and \vec{w} ? If yes, please show your reason; if no, please provide one example.

[50]