MEMORIAL UNIVERSITY
 DEPARTMENT OF MATH \& STAT

Assignment 3
Math 2050
FALL 2018
[3] 1. Find the equation of the plane that contains the point $Q(0,-1,0)$ and is parallel to the plane $2 x+y-z=0$.
Solution: The normal vector is $\vec{n}=\left[\begin{array}{l}2 \\ 1 \\ -1\end{array}\right]$. Hence, the equation of the plane is $2 x+y-z=\vec{n} \cdot \overrightarrow{O Q}=-1$.
[3] 2. Find a vector of length 2 orthogonal to the plane $x+z=5$.
Solution: First we find a vector that is orthogonal to the plane. Note that the normal $\vec{n}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is such a vector. The unit vector in the direction of \vec{n} is $\vec{u}=\frac{\vec{n}}{\|\vec{n}\|}=\frac{1}{\sqrt{2}} \vec{n}$. Now, note that the vector $\frac{2}{\sqrt{2}} \vec{n}$ has length 2 and is orthogonal to the plane.
3. Consider the points $\mathrm{A}(0,1,0), \mathrm{B}(-1,0,0)$ and $\mathrm{C}(0,0,1)$.
[5] (a) Find the equation of the plane passing through A, B, and C.
Solution: We have $A \vec{B}=\left[\begin{array}{l}-1 \\ -1 \\ 0\end{array}\right]$ and $A \vec{C}=\left[\begin{array}{l}0 \\ -1 \\ 1\end{array}\right]$. A normal vector is
$\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}i & j & k \\ -1 & -1 & 0 \\ 0 & -1 & 1\end{array}\right|=-\vec{i}+\vec{j}+\vec{k}=\left[\begin{array}{l}-1 \\ 1 \\ 1\end{array}\right]$.
As a initial point we take $P_{0}=A$. Then the equation of the plane is

$$
-x+y+z=\vec{n} \cdot \overrightarrow{O A}=1
$$

[3] (b) Find the area of the triangle ABC.
Solution: The area of the parallelogram with sides $A B$ and $A C$ is equal to

$$
\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{3}
$$

Hence, the area of the triangle $A B C$ is $\frac{\sqrt{3}}{2}$.
[5] 4. Find the equation of the line of intersection of the planes $3 x+y-2 z=1$ and $x+2 y-z=-3$.
Solution: We first find a direction vector \vec{d} for the line of intersection. Let $\overrightarrow{n_{1}}=$ $\left[\begin{array}{l}3 \\ 1 \\ -2\end{array}\right]$ and $\overrightarrow{n_{2}}=\left[\begin{array}{l}1 \\ 2 \\ -1\end{array}\right]$ be normal vectors of the two planes. Now we look for a
vector that is orthogonal to both n_{1} and n_{2}. Since \vec{d} is orthogonal to both n_{1} and n_{2}, the natural candidate is
$\vec{d}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}i & j & k \\ 3 & 1 & -2 \\ 1 & 2 & -1\end{array}\right|=3 \vec{i}+\vec{j}+5 \vec{k}=\left[\begin{array}{l}3 \\ 1 \\ 5\end{array}\right]$. Now among the many points on the intersection, we need one of them. We let $z=0$ in the equation of the planes and get that $3 x+y=1$ and $x+2 y=-3$. Solving these equations, we get $x=1$ and $y=-2$. Hence, $(1,-2,0)$ is on the line and now we can write the equation of the line as

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
-2 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right]
$$

[5] 5. Find all points (if any) of the intersection of the plane $x-y+z=1$ and the line $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right]+t\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
Solution: Suppose that there is a point (x, y, z) in the intersection of them. From the equation of the line, we have $x=t, y=3, z=-t$. Now we substitute these values into the equation of the plane and get: $(t)-(3)+(-t)=1$. We simplify and get $-3=1$ which is not possible. It means that there is no point in the intersection of the plane and the line.
6. Consider the lines with equations $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ $+s\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$
[1] (a) Are the lines parallel? justify your answer.
Solution: The lines are not parallel because their direction vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ are not parallel.
[5] (b) Determine whether or not the lines intersect. Find the point of intersection (if it exists).
Solution: If the lines intersect, say at a point (x, y, z), then (x, y, z) is on the both lines. So, there exist s, t such that

$$
\begin{aligned}
& x=1+t=1+s \\
& y=-1=-s \\
& z=1=s
\end{aligned}
$$

From Eqns 2 and 3 equation, we get $s=1$. From Eqn 1, we get $t=1$. Now we can sub in either $t=1$ into first equation or $s=1$ into second equation and see that $\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ is the point of intersection.
[5] 7. Let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Compute $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ and $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$. Should the answers be the same?
Solution: We have $\vec{u} \times \vec{v}=\left|\begin{array}{ccc}i & j & k \\ -2 & 3 & 0 \\ 1 & 2 & 3\end{array}\right|=\left[\begin{array}{l}9 \\ 6 \\ -7\end{array}\right]$ and
$(\vec{u} \times \vec{v}) \times \vec{w}=\left|\begin{array}{ccc}i & j & k \\ 9 & 6 & -7 \\ 0 & 0 & 1\end{array}\right|=\left[\begin{array}{l}6 \\ -9 \\ 0\end{array}\right]$. Also, $\vec{v} \times w=\left|\begin{array}{lll}i & j & k \\ 1 & 2 & 3 \\ 0 & 0 & 1\end{array}\right|=\left[\begin{array}{l}2 \\ -1 \\ 0\end{array}\right]$ and
$\vec{u} \times(\vec{v} \times \vec{w})=\left|\begin{array}{ccc}i & j & k \\ -2 & 3 & 0 \\ 2 & -1 & 0\end{array}\right|=\left[\begin{array}{l}0 \\ 0 \\ -4\end{array}\right]$.
We deduce that $(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times(\vec{v} \times \vec{w})$. This means that the cross product in general is not associative.
[5] 8. Find the equation of the plane containing both lines $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$
Solution: We need to find a normal vector \vec{n} for the plane. Note that the points $P=(1,-1,1)$ and $Q=(1,0,0)$ are on the lines and so P and Q are also on the plane. Hence, the vector $\overrightarrow{P Q}$ is also on the plane. Now $\overrightarrow{P Q}=Q-P=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$. Also, the direction vector $\vec{d}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is parallel to the plane. Hence, we can take $\vec{n}=\overrightarrow{P Q} \times \vec{d}=\left|\begin{array}{ccc}i & j & k \\ 0 & 1 & -1 \\ 1 & 0 & 0\end{array}\right|=\left[\begin{array}{l}0 \\ -1 \\ -1\end{array}\right]$. Now, we can use $n=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]$ and the point $Q=(1,0,0)$ to write the equation of the plane:

$$
y+z=0 .
$$

