Due: October 5, 2018. SHOW ALL WORK

[3] 1. Find the equation of the plane that contains the point $Q(0,-1,0)$ and is parallel to the plane $2 x+y-z=0$.
[5] 4. Find the equation of the line of intersection of the planes $3 x+y-2 z=1$ and $x+2 y-z=-3$.
[5] 5. Find all points (if any) of the intersection of the plane $x-y+z=1$ and the line $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right]+t\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
6. Consider the lines with equations $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ $+s\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$
[1] (a) Are the lines parallel? justify your answer.
[5]
(b) Determine whether or not the lines intersect. Find the point of intersection (if it exists).
[5] 7. Let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Compute $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ and $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$. Should the answers be the same?
[5] 8. Find the equation of the plane containing both lines $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]
$$

