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Introduction
Coupled KdV-NLS systems

ut + αuux + βuxxx = γ(|ψ|2)x

iψt + κψxx = σuψ
(1)

u(x , t) is real-valued and ψ(x , t) is complex-valued
α, β, γ, κ, σ are real non-zero constants

I electron propagation along deformable molecular chain
(Davydov, Gaididei, Zolotaryuk)

I general model of energy transfer in an anharmonic crystal
material (Cisneros-Ake & Peláez)

I also models electron propagation coupled to nonlinear
ion-acoustic waves in a collisionless plasma

I existence of coherent propagating structures: solitary wave
solutions of different shapes and subsonic/supersonic speeds

ψ = electron wave function
u = deformation of molecule/material; ion wave amplitude



Introduction continued
We study a coupled gKdV-NLS system with a power nonlinearity
p > 0:

ut + αupux + βuxxx = γ(|ψ|2)x

iψt + κψxx = σuψ
(2)

p = 1 is KdV case; quadratic nonlinearity
p = 2 is mKdV case; cubic nonlinearity
Strong interest in exact solutions which describe
frequency-modulated solitary waves

u = U(ξ), ψ = e iωtΨ(ξ), ξ = x − ct (3)

c = wave speed; ω = modulated frequency

I some solutions known for p = 1 using an ansatz
(Cisneros-Ake & Pelaez, Physica D 2017)

I no exact solutions found to-date for p = 2
(Cisneros-Ake et al, Physics Letters A 2018)

I nothing known for higher nonlinearities p ≥ 3



Introduction continued
We study a coupled gKdV-NLS system with a power nonlinearity
p > 0:

ut + αupux + βuxxx = γ(|ψ|2)x

iψt + κψxx = σuψ
(2)

p = 1 is KdV case; quadratic nonlinearity
p = 2 is mKdV case; cubic nonlinearity
Strong interest in exact solutions which describe
frequency-modulated solitary waves

u = U(ξ), ψ = e iωtΨ(ξ), ξ = x − ct (3)

c = wave speed; ω = modulated frequency

I some solutions known for p = 1 using an ansatz
(Cisneros-Ake & Pelaez, Physica D 2017)

I no exact solutions found to-date for p = 2
(Cisneros-Ake et al, Physics Letters A 2018)

I nothing known for higher nonlinearities p ≥ 3



Introduction continued
We study a coupled gKdV-NLS system with a power nonlinearity
p > 0:

ut + αupux + βuxxx = γ(|ψ|2)x

iψt + κψxx = σuψ
(2)

p = 1 is KdV case; quadratic nonlinearity
p = 2 is mKdV case; cubic nonlinearity
Strong interest in exact solutions which describe
frequency-modulated solitary waves

u = U(ξ), ψ = e iωtΨ(ξ), ξ = x − ct (3)

c = wave speed; ω = modulated frequency

I some solutions known for p = 1 using an ansatz
(Cisneros-Ake & Pelaez, Physica D 2017)

I no exact solutions found to-date for p = 2
(Cisneros-Ake et al, Physics Letters A 2018)

I nothing known for higher nonlinearities p ≥ 3



Summary of our results

I Use new, more powerful method to solve travelling wave ODE
system

I Derive exact solutions for p = 1, 2, 3, 4

I Solitary waves exhibit a wide range of features: bright and
dark peaks; single-peaked and multi-peaked; zero and
non-zero backgrounds
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Dimensionless form

Convenient to work with dimensionless form of the gKdV-NLS
system:

ut + s1u
pux + uxxx + s2(|ψ|2)x = 0 (4)

iψt + ψxx + kuψ = 0 (5)

where

s1 =

{
1, p = odd

±1, p = even
, s2 =

{
±1, p = odd

1, p = even
, k = const. 6= 0

(6)



ODE system for frequency-modulated travelling waves

u = U(ξ), ψ = e iωtΨ(ξ), ξ = x − ct

Substitute into the coupled equations (4)–(5) ⇒ nonlinear ODE
system

U ′′′ + (s1U
p − c)U ′ + s2(|Ψ|2)′ = 0

Ψ′′ − icΨ′ + (kU − w)Ψ = 0
(7)

Go to amplitude-phase variables

Ψ = A exp(iΦ)

which yields

U ′′′ + (s1U
p − c)U ′ + 2s2AA′ = 0 (8a)

A′′ + (kU + cΦ′ − Φ′2 − w)A = 0 (8b)

AΦ′′ + (2Φ′ − c)A′ = 0 (8c)



ODE system for frequency-modulated travelling waves
cont’ed

I one third-order ODE (8a) and two second-order ODEs (8b)
and (8c)

I general solution requires a total of 7 integrations

I inspection suggests that only a few explicit integrations are
possible by basic methods (Cisneros-Ake & Pelaez, Physica D

2017; Cisneros-Ake et al, Physics Letters A 2018)

I Basic method consists of looking for integrating factors by
inspection.

I Can miss complicated/unexpected forms for integrating
factors

I Difficult to handle general nonlinearity powers p 6= 1
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New method

Main steps:

I obtain first integrals by use of multi-reduction symmetry
theory (Olver 1986, Anco & Gandarias, CNSNS 2020);

I apply a hodograph transformation which leads to a triangular
decoupled system;

I introduce a power-balance ansatze for solutions of the base
ODE;

I characterize conditions under which solutions yield solitary
waves;

I solve an algebraic system for the coefficients in the ansatz
under those conditions
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Step (i) — symmetry multi-reduction I

Symmetry characterizing the form of frequency-modulated
travelling waves

x → x +cε, t → t+ε, ψ → e iωεψ ⇔ ∂t +c∂x +iωψ∂ψ−iωψ̄∂ψ̄

Galilean transformation combined with a phase rotation
invariants U = u, Ψ = e−iωtψ, ξ = x − ct

Find all conservation laws that are invariant under this symmetry

Carried out systematically by method of symmetry multi-reduction



Step (i) — symmetry multi-reduction I

Symmetry characterizing the form of frequency-modulated
travelling waves

x → x +cε, t → t+ε, ψ → e iωεψ ⇔ ∂t +c∂x +iωψ∂ψ−iωψ̄∂ψ̄

Galilean transformation combined with a phase rotation
invariants U = u, Ψ = e−iωtψ, ξ = x − ct

Find all conservation laws that are invariant under this symmetry

Carried out systematically by method of symmetry multi-reduction



Step (i) — symmetry multi-reduction I

Symmetry characterizing the form of frequency-modulated
travelling waves

x → x +cε, t → t+ε, ψ → e iωεψ ⇔ ∂t +c∂x +iωψ∂ψ−iωψ̄∂ψ̄

Galilean transformation combined with a phase rotation
invariants U = u, Ψ = e−iωtψ, ξ = x − ct

Find all conservation laws that are invariant under this symmetry

Carried out systematically by method of symmetry multi-reduction



Step (i) — symmetry multi-reduction I

Symmetry characterizing the form of frequency-modulated
travelling waves

x → x +cε, t → t+ε, ψ → e iωεψ ⇔ ∂t +c∂x +iωψ∂ψ−iωψ̄∂ψ̄

Galilean transformation combined with a phase rotation
invariants U = u, Ψ = e−iωtψ, ξ = x − ct

Find all conservation laws that are invariant under this symmetry

Carried out systematically by method of symmetry multi-reduction



Step (i) — symmetry multi-reduction II

Yields four conserved integrals:

M =

∫
R
u dx mass

J =

∫
R

1
2 |ψ|

2 dx charge

E =

∫
R

1
2u2 − (s2/k)|ψ|2 arg(ψ)x dx elastic energy

H =

∫
R

1
2u2

x − s1
1

(p+1)(p+2)u
p+2 + (s2/k)|ψx |2 − s2u|ψ|2 dx energy

Inherited as first integrals of the ODE system; only three are
functionally independent



Step (i) — symmetry multi-reduction II

⇒ ODE system is reduced to one second-order ODE and two
first-order ODEs

U ′′ = cU − s1
1

p+1Up+1 − s2A
2 + C1 (9a)

1
2kU ′2 + s2A

′2 = kC1U + 1
2kcU2 − s1

1
(p+2)(p+1)kU

p+2 (9b)

− s2kUA2 − s2( 1
4c2 + ω)A2 − s2C2

2A−2 − C3

Φ′ = 1
2c + C2A

−2 (9c)

C1, C2, C3 are free constants.

⇒ General solution now requires 4 integrations



Step (ii) — decoupling into triangular form I

Apply hodograph transformation A = F (U) which yields

U ′′ = cU − s1
1

p+1Up+1 − s2F (U)2 + C1 (10a)

U ′2 =
1

F (U)2( 1
2k + s2F ′(U)2)

((
kC1U + 1

2kcU2 − s1k
(p+2)(p+1)U

p+2

− s2(( 1
4c2 + ω) + kU)F (U)2 − C3

)
F (U)2 − s2C2

2
)

(10b)

Φ′ = 1
2c + C2F (U)−2 (10c)

Second-order ODE (10a) is nonlinear oscillator equation
It possesses the first integral

U ′2 = −s22G (U)− s1
2

(p+1)(p+2)U
p+2 + cU2 + 2C1U + 2C4,

G (U) =
∫

F (U)2 dU, C4 is a free constant

Substitute into ODE (10b) and clear the denominator
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Step (ii) — decoupling into triangular form II

⇒ Result is a second-order ODE for G (U)

1
2

(
s2G (U) + s1

1
(p+1)(p+2)U

p+2 − 1
2cU2 − C1U − C̃4

)
G ′′(U)2 =

(kU + 1
4c2 + ω)G ′(U)2 −

(
kG (U)− s2(C̃3 + kC̃4)

)
G ′(U) + C2

2

(11)

Theorem Any solution G (U) of (11) yields a solution
(U(ξ),A(ξ),Φ(ξ)) of the reduced ODE system (9a)–(9c) by
quadratures. Hence, a frequency-modulated travelling wave is
obtained for gKdV-NLS system.

⇒ Original ODE system (requiring 7 integrations) has been
reduced to a single second-order ODE (requiring only 2
integrations)

Observation: ODE (11) is polynomial in G ′′, G ′, G , and U
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Step (iii) — power-balance ansatz for solutions

Consider G (U) to be a polynomial in U whose degree is
determined by balancing powers in the ODE (11)
⇒

G (U) = −s1s2
1

(p+1)(p+2)U
p+2 + g3U

3 + g2U
2 + g1U + g0 (12)

g0, g1, g2, g3 are constant parameters which will be determined



Steps (iv) and (v) — overdetermined algebraic system

Substitution of G (U)
⇒ several exponents like p − 2, p − 1, p, p + 1, p + 2, ..

⇒ many combinations of terms that might cancel each other
⇒ CA package crack generating these cases each resulting in an
overdetermined algebraic system for g0, g1, g2, g3 and p.

Solve by standard methods (crack and again using Maple
command rifsimp via case splitting).

Impose condition that U(ξ) has asymptotic exponential decay as
|ξ| → ∞ (so that it will describe a solitary wave)
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Solitary waves
Theorem Solutions exist for p = 1, 2, 3, 4 and take the form

U(ξ) = b + s3h sech2
(√

gh/2 ξ
)

A(ξ) =
√

g1 + 2g2U(ξ) + 3g3U(ξ)2 − s1s2
1

p+1U(ξ)p+1

Φ(ξ) =
c

2
ξ + C1

∫ ξ

0

dξ

A(ξ)2
+ φ

where

s3 = s2 sgn(g3) = ±1, g = |g3|, b = −1
3 (s3h + (g2 − s2

1
2c)/g3),

h = 1
2

√
d/g , d = (c − s22g2)2 + 12g3(s2C1 − g1) > 0

I wave profile U is similar to a KdV soliton

I profile for A can have several different shapes depending on p
and (k, c , ω, b, h) and the signs s3, s2, s1

I parameters obey a set of equations and inequalities, which
differ for each case p = 1, 2, 3, 4
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The End

Happy Birthday Peter
with many Returns!


