Introduction to Moving Frames à la Cartan

Thomas Ivey

College of Charleston

Symmetry, Invariants, and Their Applications: A Celebration of Peter Olver's 70th Birthday Dalhousie University, August 2022

Outline

Three Ways of Looking at a Plane Curve

- Normalizing Taylor Series
- Mappings into the Group
- Lifts into the Frame Bundle

(Equi)affine Curves

- The Equiaffine Frame Bundle
- Adapted Lifts
- Affine Curvature

Some Conformal Geometry

- Möbius Transformations and Conformal Frames
- Conformal Invariants of Curves
- Conformal Invariants of Surfaces

Origin of Curvature for Planar Curves

Let $\gamma : \mathbb{R} \to \mathbb{E}^2$ be a curve in the Euclidean plane, acted on by group ASO(2) of rotations and translations. WLOG, assume it's a graph

$$\gamma(x) = \begin{bmatrix} x\\ f(x) \end{bmatrix}$$

We use the group to normalize Taylor series of γ at $x = x_0$, by moving it into a 'standard position'.

▶ first, translate to origin

$$\tilde{\gamma}(x) = \begin{bmatrix} x - x_0 \\ f(x) - f(x_0) \end{bmatrix}$$

 \blacktriangleright apply a unique rotation so $\tilde{\gamma}'(x_0)$ points along the positive x-axis

$$\tilde{\gamma}(x) = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \begin{bmatrix} x - x_0\\ f(x) - f(x_0) \end{bmatrix}, \qquad \theta = \arctan f'(x_0).$$

▶ group motions are used up, so *remaining Taylor series coefficients are* geometric invariants

Regard this 'standardized' curve as a new graph

$$\begin{bmatrix} \overline{x} \\ \overline{f}(\overline{x}) \end{bmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{bmatrix} x - x_0 \\ f(x) - f(x_0) \end{bmatrix}$$

.

Using implicit diff, find Taylor series coeffs at $\overline{x} = 0$:

$$\overline{f}(0) = 0, \quad \overline{f}'(0) = 0, \quad \overline{f}''(0) = \frac{f''(x_0)}{(1 + f'(x_0)^2)^{3/2}}, \quad \dots$$

▶ second derivative gives curvature of original curve at $(x_0, f(x_0))$.

Is the curvature function $\kappa(x)=\frac{f''(x)}{(1+f'(x)^2)^3/2}$ enough to identify two congruent planar curves?

Focus on the mapping into the group!

For convenience, write the action of G = ASO(2) on \mathbb{R}^2 in linear form:

$$\begin{pmatrix} 1 & 0 \\ \mathbf{b} & A \end{pmatrix} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 \\ A\mathbf{x} + \mathbf{b} \end{bmatrix}, \qquad \mathbf{b}, \mathbf{x} \in \mathbb{R}^2, A \in SO(2).$$

Consider the inverse transformation, moving a graph with horizontal tangent at the origin back to $(x,f(x))\colon$

$$\mathbf{b} = \begin{bmatrix} x \\ f(x) \end{bmatrix}, \quad A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}, \qquad \theta(x) = \arctan f'(x).$$

Regard this as a mapping $x \mapsto g \in G$, and apply left-invt 1-forms to compute its derivative in the Lie algebra g:

$$g^{-1}\frac{dg}{dx} = \sec\theta \begin{pmatrix} 0 & 0 & 0\\ 1 & 0 & -\kappa(x)\\ 0 & \kappa(x) & 0 \end{pmatrix}$$

Reparametrize the mapping by arclength $s = \int \sec \theta \, dx$. Then two curves γ_1 , γ_2 are congruent via action of G if and only if their curvature functions match (up to shift in s) as functions of arclength:

$$\kappa_1(s+c) = \kappa_2(s), \qquad c \in \mathbb{R}.$$

Why's it called a moving frame?

En français: repére mobile

Let $x \to g(x)$ be our mapping into ASO(2), and let \mathbf{i}, \mathbf{j} be unit vectors at the origin $\mathbf{0}$, tangent to the axes. Then

$$e_1(x) = g(x)_* i, \quad e_2(x) = g(x)_* j$$

gives a 1-parameter family of orthonormal pairs (e_1, e_2) , comprising a basis (or 'frame') for the tangent space to \mathbb{R}^2 at $\gamma(x) = g(x)\mathbf{0}$ which 'moves' so that $e_1(x)$ always tangent to the curve.

In this way, g can be identified with a lift of γ into the frame bundle of \mathbb{E}^2 .

The General Linear Frame Bundle of \mathbb{R}^n

Let $\mathcal{F}_{\mathbb{R}^n} = \{(\mathbf{b}, \mathbf{e}_1, \dots, \mathbf{e}_n)\}$ where **b** is a point in \mathbb{E}^n and $(\mathbf{e}_1, \dots, \mathbf{e}_n)$ is any basis for $T_{\mathbf{b}}\mathbb{R}^n$. Thus, $\mathcal{F}_{\mathbb{R}^n}$ is a bundle over \mathbb{R}^n with basepoint map

 $\pi: (\mathbf{b}, \mathbf{e}_1, \dots, \mathbf{e}_n) \mapsto \mathbf{b}$

and fiber GL(n). Regard \mathbf{b}, \mathbf{e}_i as \mathbb{R}^n -valued fns on \mathcal{F} , and resolve their exterior derivatives in terms of the basis $\{\mathbf{e}_i\}$:

$$d\mathbf{b} = \mathbf{e}_i \otimes \omega^i, \quad d\mathbf{e}_j = \mathbf{e}_i \otimes \varphi^i_j,$$

defining n canonical 1-forms ω^i and n^2 connection 1-forms φ^i_j on \mathcal{F} . (Drop tensor signs from now on.) These independent 1-forms satisfy *structure equations*

$$d\omega^i = -\phi^i_j \wedge \omega^j, \qquad d\varphi^i_j = -\varphi^i_k \wedge \varphi^k_j.$$

The Euclidean frame bundle $\mathcal{F}_{\mathbb{E}^n}$ is the sub-bundle where bases $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ are oriented and orthonormal. The same structure equations hold, but only $\binom{n}{2}$ of the connection forms are independent, since $\varphi_j^i = -\varphi_i^j$ and the fiber is SO(n).

(Likewise, any Riemannian manifold has an orthonormal frame bundle with canonical & connection forms, but the 2nd structure equation also has a curvature term.)

Moving Frame as Lift into the Frame Bundle

When n=2, $\dim \mathcal{F}_{\mathbb{R}^2}=3$, with a global coframe $(\omega^1,\omega^2,\varphi_1^2)$ defined by

$$d\mathbf{b} = \mathbf{e}_1\omega^1 + \mathbf{e}_2\omega^2, \qquad d\mathbf{e}_1 = \mathbf{e}_2\varphi_1^2, \qquad d\mathbf{e}_2 = \mathbf{e}_1\varphi_2^1 = -\mathbf{e}_1\varphi_1^2.$$

For $\gamma:\mathbb{R}\to\mathbb{E}^2$ as before, the map $x\mapsto g(x)$ gives a $\mathit{lift}\ \Gamma:\mathbb{R}\to\mathcal{F}_{\mathbb{E}^2}$ with

$$\mathbf{b} = \gamma(x), \qquad \mathbf{e}_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \qquad \mathbf{e}_2 = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

Differentiating and comparing with our calculation of $g^{-1}dg/dx$ shows that this lift satisfies (and is uniquely characterized by)

$$\Gamma^*\omega^1=ds,\quad \Gamma^*\omega^2=0,\quad \Gamma^*\varphi_1^2=\kappa\,ds.$$

Cartan's method of moving frame consists of using the freedom of the group to simplify as much as possible the values of the pullbacks of the canonical and connection 1-forms with the goal of obtaining a unique lift into the frame bundle.

Overview

► Next, want to illustrate Cartan's method of moving frames in the setting of a larger transformation group, still acting on planar curves

▶ proceed by requiring more and more specific adaptations of the moving frame, with goal of identifying differential invariants

▶ at each step, all such frames are sections of a reduction \mathcal{F}_k of the general frame bundle to smaller fiber group

▶ keep track of which canonical and connection forms are zero on \mathcal{F}_k , and which are semibasic (i.e., zero on vertical vectors)

▶ each semibasic is a multiple of some canonical form(s) on \mathcal{F}_k , and the fiber group acts on these coefficients

▶ if action is trivial, get an invariant function on the base; if not, we use the group to normalize, leading to further reductions

The (Equi)affine Plane

Let ASL(2) be the group of (equi)affine transformations of \mathbb{R}^2 :

$$\begin{pmatrix} 1 & 0 \\ \mathbf{b} & A \end{pmatrix} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 \\ A\mathbf{x} + \mathbf{b} \end{bmatrix}, \qquad \mathbf{x}, \mathbf{b} \in \mathbb{R}^2, A \in SL(2, \mathbb{R})$$

By acting on the standard basis at the origin, we again identify ASL(2) with a sub-bundle $\mathcal{F}_{\mathbb{A}^2}\subset \mathcal{F}_{\mathbb{R}^2}$,

$$\mathbf{b} = \mathsf{basepoint}, \quad \mathbf{e}_1 = A_1 \text{ (first column of } A), \quad \mathbf{e}_2 = A_2.$$

Because $\det A = 1$, on this sub-bundle the connection forms satisfy

$$\varphi_1^1+\varphi_2^2=0$$

and the fiber group is 3-dimensional $SL(2,\mathbb{R})$.

Given a regular immersion $\gamma: \mathbb{R} \to \mathbb{R}^2$, can we define a unique lift into $\mathcal{F}_{\mathbb{A}^2}$?

What are necessary and sufficient conditions for two such curves to be congruent by the ASL(2) action?

First Adaptation

Given regular γ , let $\mathcal{F}_0 = \gamma^* \mathcal{F}_{\mathbb{A}^2}$ (i.e., frames with basepoint on γ). Define a sub-bundle $\mathcal{F}_1 \subset \mathcal{F}_0$ consisting of frames such that \mathbf{e}_1 is tangent to γ . Since on \mathcal{F}_0

$$d\mathbf{b} = \mathbf{e}_1 \omega^1 + \mathbf{e}_2 \omega^2$$

then ω^2 pulls back to be zero on \mathcal{F}_1 .

▶ fiber of \mathcal{F}_1 is 2-dimensional, isomorphic to an upper triangular subgroup $G_1 \subset SL(2, \mathbb{R})$ which acts on the fiber by

$$\mathbf{e}_1 \mapsto a\mathbf{e}_1, \quad \mathbf{e}_2 \mapsto a^{-1}\mathbf{e}_2 + b\mathbf{e}_1, \qquad a, b \in \mathbb{R}, a \neq 0.$$

(For $g \in G_1$, let R_g denote this action.) Thus, the *direction* of e_1 is fixed as we move along the fiber. Since

$$d\mathbf{e}_1 = \mathbf{e}_1\varphi_1^1 + \mathbf{e}_2\varphi_1^2$$

this means that on \mathcal{F}_1 , φ_1^2 is semibasic (i.e., zero on vectors tangent to the fiber). Hence there is a function u on \mathcal{F}_1 such that

$$\varphi_1^2 = u\omega^1$$

How does this function vary along the fiber?

From above,

$$R_g^* \mathbf{e}_1 = a \mathbf{e}_1.$$

For a fixed a, b, differentiate both sides and sub in for de_1 and de_2 .

$$a\mathbf{e}_1 R_g^* \varphi_1^1 + (a^{-1}\mathbf{e}_2 + b\mathbf{e}_1) R_g^* \varphi_1^2 = a(\mathbf{e}_1 \varphi_1^1 + \mathbf{e}_2 \varphi_1^2)$$

Equating e_2 coefficients implies

$$R_g^*\varphi_1^2 = a^2\varphi_1^2.$$

On the other hand, since $d\mathbf{b} = \omega^1 \mathbf{e}_1$ and the basepoint \mathbf{b} is fixed by R_q , then

$$R_g^*\omega^1 = a^{-1}\omega^1.$$

Since $\varphi_1^2 = u\omega^1$, then

$$R_g^* u = a^3 u.$$

<u>Remark</u> We can get the same information by differentiating $\varphi_1^2 = u\omega^1$. Using the structure equations (and $\varphi_1^1 + \varphi_2^2 = 0$ and $\omega^2 = 0$) yields

$$(du - 3u\omega_1^1) \wedge \omega^1 = 0$$

i.e., $d \log |u| \equiv 3\omega_1^1$ modulo semibasic terms. Hence, u scales like the cube of e_1 along the fiber.

Second Adaptation

Either u = 0 or $u \neq 0$ on entire fibers of \mathcal{F}_1 . But

$$d\mathbf{e}_1 = \mathbf{e}_1 \varphi_1^1 + u \mathbf{e}_2 \omega^1$$

shows that when $u \neq 0$ the direction e_1 of the tangent line is always changing as we move along the base. Hence, points where u = 0 are *inflection points* of the curve.

Assume that γ is free of inflection points; then there is a sub-bundle $\mathcal{F}_2 \subset \mathcal{F}_1$ where u = 1 identically.

▶ fiber of \mathcal{F}_2 is isomorphic to a 1-dimensional subgroup $G_2 \subset G_1$ acting by

$$\mathbf{e}_1 \mapsto \mathbf{e}_1, \qquad \mathbf{e}_2 \mapsto \mathbf{e}_2 + b\mathbf{e}_1.$$

Now $R_g^*\omega^1 = \omega^1$ is a well-defined 1-form along γ , the (equi)affine arclength differential. For a generic parametrized curve $\gamma(x)$ we can compute the affine arclength

$$s = \int \omega^1 = \int \det(\gamma'(x), \gamma''(x))^{1/3} dx.$$

Since \mathbf{e}_1 is fixed along the fiber, φ_1^1 is semibasic, so there is a function v on \mathcal{F}_2 such that

$$\varphi_1^1 = v \,\omega^1.$$

How does v vary along the fiber of \mathcal{F}_2 ?

Third (and last) Adaptation

The earlier calculation (with a = 1) implies that

$$R_g^*\varphi_1^1 = \varphi_1^1 - b\omega^1,$$

so that $R_g^*v = v - b$. Thus, along each fiber of \mathcal{F}_2 there is a unique point where v = 0.

<u>Thm</u> A generic curve in the equiaffine plane has a unique lift Γ into $\mathcal{F}_{\mathbb{A}^2}$ such that

$$\Gamma^*\omega^1 = ds, \quad \Gamma^*\omega^2 = 0, \quad \Gamma^*\varphi_1^2 = \omega^1, \quad \Gamma^*\varphi_1^1 = 0.$$

The (equi)affine curvature function \varkappa is defined by

 $\Gamma^* \varphi_2^1 = -\varkappa \, ds$ (Blaschke, 1923)

▶ two curves are congruent under $ASL(2, \mathbb{R})$ if and only if their curvature functions coincide (up to a shift in s)

 \blacktriangleright for a curve parametrized by equiaffine arclength, $\gamma^{\prime\prime\prime}(s)+\varkappa\,\gamma^\prime(s)=0$

▶ hence, curves with constant \varkappa are *conics*: parabolas, ellipses, and hyperbolas, depending on whether $\varkappa = 0$, $\varkappa > 0$ or $\varkappa < 0$ respectively

The Conformal 3-Sphere

On $\mathbb{R}^5,$ defined an indefinite quadratic form

$$\langle {\bf x}, {\bf x} \rangle = -x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2$$

Let \mathcal{N} be the cone of nonzero null vectors: $\langle \mathbf{x}, \mathbf{x} \rangle = 0$, $\mathbf{x} \neq 0$ \blacktriangleright under projectivization $\pi : \mathbb{R}^5 \to \mathbb{R}P^4$ the image of \mathcal{N} is S^3 .

<u>Proof</u> For points on \mathbb{N} , $x_0 \neq 0$, and projective coordinates $y_i = x_i/x_0$ satisfy

$$y_1^2 + y_2^2 + y_3^2 + y_4^2 = 1.$$

 \blacktriangleright the group of proper linear tx preserving $\langle\,,\,\rangle$ is SO(4,1)

This 10-dimensional group acts on $S^3=\pi(\mathbb{N})$ by Möbius transformations.

- preserve angles, take spheres to spheres and circles to circles
- conformal moving frames reveal what else is preserved

It's convenient to make a linear change of coords on \mathbb{R}^5 so that

$$\langle \mathbf{z}, \mathbf{z} \rangle = z_1^2 + z_2^2 + z_3^2 - 2z_0 z_4.$$

Let $K \simeq SO(4, 1)$ be the group preserving this form.

Conformal Frames for S^3

A matrix g belongs to K iff det(g) = 1 and its columns $(\mathbf{e}_0, \dots, \mathbf{e}_4)$ satisfy

$$\begin{split} \langle \mathbf{e}_0, \mathbf{e}_0 \rangle &= \langle \mathbf{e}_4, \mathbf{e}_4 \rangle = 0, & \langle \mathbf{e}_0, \mathbf{e}_4 \rangle = -1, \\ \langle \mathbf{e}_i, \mathbf{e}_0 \rangle &= \langle \mathbf{e}_i, \mathbf{e}_4 \rangle = 0, & \langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}, & i, j = 1, 2, 3. \end{split}$$

▶ in particular, first and last columns are null vectors . . .

want to have frames in a fixed vector space

For $p\in S^3$ let a *conformal frame* at p be any 5-tuple of vectors in \mathbb{R}^5 satisfying the above relations, such that

$$\pi(\mathbf{e}_0) = p$$

Then the mapping $p: g \mapsto \pi(\mathbf{e}_0)$ lets us identify K as the conformal frame bundle \mathcal{F} of S^3 . As before, define 1-forms ω_b^a on \mathcal{F} such that

$$d\mathbf{e}_a = \mathbf{e}_b \omega_a^b, \qquad a, b = 0 \dots 4$$

 \blacktriangleright these satisfy $d\omega^a_b = -\omega^a_c \wedge \omega^c_b$ (Maurer-Cartan) and

$$\begin{split} \omega_4^0 &= 0, & \omega_0^4 &= 0, & \omega_4^4 &= -\omega_0^0, \\ \omega_i^4 &= \omega_0^i, & \omega_4^i &= \omega_i^0, & \omega_i^j &= -\omega_j^i, & i, j = 1, 2, 3. \end{split}$$

We'll write $\omega^1, \omega^2, \omega^3$ for semibasics $\omega^1_0, \omega^2_0, \omega^3_0$ respectively.

Adapted Conformal Frames for Curves

Let $\gamma: \mathbb{R} \to S^3$ be regular, and $\mathcal{F}_0 = \gamma^* \mathcal{F}$, with 7-dimensional fibers.

Let $\mathcal{F}_1 \subset \mathcal{F}_0$ be frames such that $p_*\mathbf{e}_1$ is tangent to γ ; this has 5-dim'l fibers. Since

$$d\mathbf{e}_0 = \mathbf{e}_0\omega_0^0 + \mathbf{e}_1\omega^1 + \mathbf{e}_2\omega^2 + \mathbf{e}_3\omega^3,$$

then $\omega^2=\omega^3=0$ on \mathcal{F}_1 , while

$$d\mathbf{e}_1 = \mathbf{e}_0\omega_1^0 + \mathbf{e}_2\omega_1^2 + \mathbf{e}_3\omega_1^3 + \mathbf{e}_4\omega^1$$

shows that ω_1^2, ω_1^3 are semibasic (i.e., multiples of ω^1) on \mathcal{F}_1 .

 \blacktriangleright adding multiples of $\mathbf{e}_2,\mathbf{e}_3$ to \mathbf{e}_4 lets us absorb these terms

Let $\mathcal{F}_2 \subset \mathcal{F}_1$ be frames such that $\omega_1^2 = \omega_1^3 = 0$. \blacktriangleright fibers are 3-dimensional, acted on by

 $\mathbf{e}_0 \mapsto \lambda \mathbf{e}_0, \qquad \mathbf{e}_1 \mapsto \mathbf{e}_1 + \mu \mathbf{e}_0, \qquad \mathbf{e}_4 \mapsto \lambda^{-1} (\mathbf{e}_4 + \mu \mathbf{e}_1 + \frac{1}{2}\mu^2 \mathbf{e}_0),$

plus rotations $\mathbf{e}_2 \mapsto \cos \theta \, \mathbf{e}_2 + \sin \theta \, \mathbf{e}_3$, $\mathbf{e}_3 \mapsto -\sin \theta \, \mathbf{e}_2 + \cos \theta \, \mathbf{e}_3$

▶ 1-forms
$$\omega_4^2 = \omega_2^0$$
 and $\omega_4^3 = \omega_3^0$ are semibasic on \mathcal{F}_2

Moreover span{ $\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_4$ } is invariant along each fiber of \mathcal{F}_2 .

 \blacktriangleright projects under π to give the 'osculating plane' to the curve

▶ curves in S^3 for which this is *constant* lie in a fixed affine plane in \mathbb{R}^4 , i.e., they are (not necessarily great) circles in S^3

Assume that nowhere does γ have higher-order contact with its osculating plane. Then we can use the remaining fiber group to make ω_4^2 equal to ω^1 and $\omega^0 = \omega_4^3 = 0$, resulting in a unique moving frame. Let $\omega^1 = ds$ (conformal arclength differental); the remaining semibasics ω_1^0, ω_2^3 give invariants:

$$\frac{d\mathbf{e}_0}{ds} = \mathbf{e}_1, \quad \frac{d\mathbf{e}_1}{ds} = \kappa \mathbf{e}_0 + \mathbf{e}_4, \quad \frac{d\mathbf{e}_2}{ds} = \mathbf{e}_0 + \tau \mathbf{e}_3, \quad \frac{d\mathbf{e}_3}{ds} = -\tau \mathbf{e}_2, \quad \frac{d\mathbf{e}_4}{ds} = \kappa \mathbf{e}_1 + \mathbf{e}_2$$

 \blacktriangleright curves with $\tau=0$ lie on spheres in S^3

• curves with $\kappa = 0$ and $\tau = 0$ are conformally equivalent to *logarithmic spirals* in the plane (under stereographic projection)

Adapted Conformal Frames for Surfaces

Let $\Sigma \subset S^3$ be an surface, and let $\mathcal{F}_0 = \mathcal{F}|_{\Sigma}$.

First adaptation: Let $\mathcal{F}_1 \subset \mathcal{F}_0$ be sub-bundle of frames such that $\pi_* \mathbf{e}_1, \pi_* \mathbf{e}_2$ span the tangent space of Σ . This has 5-dimensional fibers. Since

$$d\mathbf{e}_0 = \mathbf{e}_0\omega^0 + \mathbf{e}_1\omega^1 + \mathbf{e}_2\omega^2 + \mathbf{e}_3\omega^3$$

then $\omega^3=0$ and ω^1,ω^2 span the semibasics on \mathcal{F}_1 . Differentiating $\omega^3=0$ gives

$$0 = \omega_1^3 \wedge \omega^1 + \omega_2^3 \wedge \omega^2.$$

By Cartan's Lemma, there are functions a, b, c on \mathcal{F}_1 such that

$$\omega_1^3 = a\omega^1 + b\omega^2, \qquad \omega_2^3 = b\omega^1 + c\omega^2.$$

▶ usual second fund. form $a(\omega^1)^2 + c(\omega^2)^2 + 2b\omega^1\omega^2$ is not conformally invariant! However, by computing how a, b, c vary along the fiber, we see that the third fund. form

$$\mathcal{T} = b(\omega^1)^2 - b(\omega^2)^2 + (c-a)\omega^1\omega^2$$

is well-defined (up to scaling) on fibers of \mathcal{F}_1 .

Conformal Invariants

lines of curvature (which are null directions for \mathcal{T}) and umbilic points are conformally invariant!

▶ 2-form $\Omega = (b^2 + \frac{1}{4}(a-c)^2)\omega^1 \wedge \omega^2$ is invariant along the fibers of \mathcal{F}_1 , so is well-defined on Σ , giving the Willmore functional

$$\mathcal{W}(\Sigma) = \int_{\Sigma} \Omega$$

> critical surfaces are known as Willmore immersions.

<u>Thm</u> (Codá Marques & Neves, 2014) Among all immersed tori in S^3 , the Willmore functional is minimized by the Clifford torus.

Second Adaptation: Let $\mathcal{F}_2 \subset \mathcal{F}_1$ be where a + c = 0. Then ω_3^0 is semibasic on \mathcal{F}_2 , and \mathbf{e}_3 is fixed along the 4-d fibers. This defines a *conformal Gauss map*

$$\Gamma: \Sigma \to Q, \qquad \Gamma = \pi \circ \mathbf{e}_3$$

where $Q^4 \subset \mathbb{R}^5$ is the quadric defined by $\langle \mathbf{z}, \mathbf{z} \rangle = 1$. $\blacktriangleright W(\Sigma) = \text{area of the Gauss image}$

Third Adaptation:

Assume Σ is free of umbilic points. Then there is a unique conformal moving frame such that b = 0, $\omega_3^0 = 0$ and $\Omega = \omega^1 \wedge \omega^2$.

 \blacktriangleright frame vector ${\bf e}_4$ maps into null cone N, & projectivizing gives a well-defined dual surface in S^3

<u>Thm</u> (Bryant) If $X: M \to S^3$ is a Willmore immersion, with non-umbilic points forming an open dense subset $U \subset M$, then its dual immersion $\hat{X}: U \to S^3$ is also a Willmore immersion.

<u>Remark</u> Other choices of adaptations are useful in other situations:

<u>Problem</u> Classify surfaces $\Sigma \subset \mathbb{R}^3$ foliated by two orthogonal families of circles.

By adapting sections of \mathcal{F}_2 to point along these circles, one can prove:

<u>Thm</u> (I–) The circles must be lines of curvature (hence Σ is a *cyclide of Dupin*) unless tangents to the circles are bisected by the lines of curvature, in which case they are also circles, and Σ is conformally equivalent to a Clifford torus.