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Plane Curves Normalizing Taylor Series

Origin of Curvature for Planar Curves

Let 7 : R — E2 be a curve in the Euclidean plane, acted on by group ASO(2) of
rotations and translations. WLOG, assume it's a graph

W”‘b@}

We use the group to normalize Taylor series of 7 at © = x(, by moving it into a
‘standard position’.

» first, translate to origin

W@:bé_ﬁmﬁ

» apply a unique rotation so ’N)’/(xo) points along the positive z-axis

T G e T B

» group motions are used up, so remaining Taylor series coefficients are
geometric invariants
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Plane Curves Normalizing Taylor Series

Regard this ‘standardized’ curve as a new graph

[fé:)} - <—Ccs)1Sn€0 2;23) [f(;i :;‘zxo)] .

Using implicit diff, find Taylor series coeffs at T = 0:

foy=0, FO)=0, F(0)= (1+J;I’/((§§))2)3/2

» second derivative gives curvature of original curve at (xo, f(xo)).

f"(=)

Is the curvature function x(z) = A e enough to identify two

congruent planar curves?

Focus on the mapping into the group!
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For convenience, write the action of G = ASO(2) on R? in linear form:

1 oo\[1] [ 1 )
(0O (] bxemiacson.

Consider the inverse transformation, moving a graph with horizontal tangent at
the origin back to (z, f(z)):

b— [ f@)} L A= (C"59 Smo) . 8(x) = arctan f'(x).

sinf cosd

Regard this as a mapping « — g € G, and apply left-invt 1-forms to compute its
derivative in the Lie algebra g:

dg 0 0 0
g_ld— =secl |1 0 —k(x)
t 0 r(x) 0

Reparametrize the mapping by arclength s = [ secfdx. Then two curves V1, V2
are congruent via action of G if and only if their curvature functions match (up to
shift in s) as functions of arclength:

k1(s +¢) = Ka(s), ceR.
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Why's it called a moving frame?

En francais: repére mobile

Let z — g(z) be our mapping into ASO(2), and let i, j be unit vectors at the
origin 0, tangent to the axes. Then

e1(r) = g(z).d, ex(x)=g(x).j

gives a 1-parameter family of orthonormal pairs (e1, es), comprising a basis (or
‘frame’) for the tangent space to R? at 7(x) = g(x)0 which ‘moves’ so that e; ()
always tangent to the curve.

In this way, g can be identified with a lift of ¥ into the frame bundle of E2.



The General Linear Frame Bundle of R"
Let Fr» = {(b,e1,...,e,)} where b is a point in E" and (e1,...,e,) is any
basis for T, R™. Thus, Fg» is a bundle over R™ with basepoint map
w:(b,er,...,e,)— b

and fiber GL(n). Regard b, e; as R™-valued fns on F, and resolve their exterior
derivatives in terms of the basis {e;}:

db=e;®@uw', dej=e;®
defining n canonical 1-forms w? and n? connection 1-forms gpé on F. (Drop tensor
signs from now on.) These independent 1-forms satisfy structure equations

dw' = —q/); Aw, dgp; =—@i A gpf.

The Euclidean frame bundle Fg- is the sub-bundle where bases (e, ...,e,) are
oriented and orthonormal. The same structure equations hold, but only (Z) of the

connection forms are independent, since goé. = fgog and the fiber is SO(n).

(Likewise, any Riemannian manifold has an orthonormal frame bundle with
canonical & connection forms, but the 2nd structure equation also has a curvature

term.)
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Moving Frame as Lift into the Frame Bundle
When n = 2, dim Fg> = 3, with a global coframe (w!,w?, ©?) defined by
db = eqw! + e2w2, de; = egcpf, dey = eup% = —eup%.

For 7 : R — E? as before, the map x — g(z) gives a lift T : R — Fg2 with

b=, o= [0050} el [_Smo} |

sin @ cos

Differentiating and comparing with our calculation of g~'dg/dx shows that this
lift satisfies (and is uniquely characterized by)

Mwl =ds, THw? =0, T*p?=rds.

Cartan's method of moving frame consists of using the freedom of the group to
simplify as much as possible the values of the pullbacks of the canonical and
connection 1-forms with the goal of obtaining a unique lift into the frame bundle.
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Overview
» Next, want to illustrate Cartan's method of moving frames in the setting of a
larger transformation group, still acting on planar curves

» proceed by requiring more and more specific adaptations of the moving frame,
with goal of identifying differential invariants

» at each step, all such frames are sections of a reduction Fj, of the general
frame bundle to smaller fiber group

» keep track of which canonical and connection forms are zero on F, and which
are semibasic (i.e., zero on vertical vectors)

» each semibasic is a multiple of some canonical form(s) on Fy, and the fiber
group acts on these coefficients

» if action is trivial, get an invariant function on the base; if not, we use the
group to normalize, leading to further reductions
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The (Equi)affine Plane

Let ASL(2) be the group of (equi)affine transformations of R?:

G Ol-lob) xvewacsan

By acting on the standard basis at the origin, we again identify ASL(2) with a
sub-bundle Fy2 C Fge,

b = basepoint, e; = A (first column of A), ey = A,.
Because det A = 1, on this sub-bundle the connection forms satisfy
P43 =0
and the fiber group is 3-dimensional SL(2,R).
Given a regular immersion 7 : R — R?, can we define a unique lift into Fy2?
What are necessary and sufficient conditions for two such curves to be congruent

by the ASL(2) action?
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=CTENMENETN  Adapted Lifts

First Adaptation

Given regular 7, let Fo = 7* Faz (i.e., frames with basepoint on 7).
Define a sub-bundle F; C Fy consisting of frames such that e; is tangent to 7.

Since on Fy

db = ejw! + esw?

then w? pulls back to be zero on Fj.

» fiber of F7 is 2-dimensional, isomorphic to an upper triangular subgroup
G1 C SL(2,R) which acts on the fiber by

e — aeq, 62'—>a_162+b91, a,be R a#0.

(For g € G4, let R, denote this action.)
Thus, the direction of e; is fixed as we move along the fiber. Since

de; = elga% + 8250%

this means that on JF, ©? is semibasic (i.e., zero on vectors tangent to the fiber).
Hence there is a function u on F; such that

Y] = uw".

How does this function vary along the fiber?
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From above,
Rje; = aey.

For a fixed a, b, differentiate both sides and sub in for de; and des.
ae1 Ryt + (a” ey + ber ) Ryl = a(e1pr + eap?)
Equating ey coefficients implies
Ry} = a®¢f.
On the other hand, since db = wle; and the basepoint b is fixed by Ry, then

R;wl =a lw'.

Since ¢? = uw!, then

R;u = a’u.

Remark We can get the same information by differentiating p? = uw!. Using the
structure equations (and ¢! + 3 = 0 and w? = 0) yields

(du — 3uwi) Aw' =0

i.e., dlog |u| = 3w} modulo semibasic terms. Hence, u scales like the cube of e;
along the fiber.



=CTENMENETN  Adapted Lifts

Second Adaptation
Either «w = 0 or u # 0 on entire fibers of F;. But

de; = elgp% + uesw’
shows that when u # 0 the direction e; of the tangent line is always changing as
we move along the base. Hence, points where u = 0 are inflection points of the

curve.

Assume that 7 is free of inflection points; then there is a sub-bundle 7, C F;

where u = 1 identically.

» fiber of F5 is isomorphic to a 1-dimensional subgroup G> C G acting by
e — ey, eg&—>e2—|—be1.

Now R}w' = w' is a well-defined 1-form along 7, the (equi)affine arclength

differential. For a generic parametrized curve Y(x) we can compute the affine

arclength

5= /wl = /det(W'(m),’Y”(az))l/?’dx.

Since ey is fixed along the fiber, 90} is semibasic, so there is a function v on Fy

such that

ol =vwl.

How does v vary along the fiber of F37 s
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Third (and last) Adaptation

The earlier calculation (with @ = 1) implies that
RZ@% = QO} - bwlv

so that Rjv = v —b. Thus, along each fiber of F5 there is a unique point where
v =0.
Thm A generic curve in the equiaffine plane has a unique lift I" into F42 such that
Mol =ds, TFw?=0, Trpi=w!, Trp;=0.
The (equi)affine curvature function 3 is defined by
o) = —s»xds  (Blaschke, 1923)

» two curves are congruent under ASL(2,R) if and only if their curvature
functions coincide (up to a shift in s)

» for a curve parametrized by equiaffine arclength, 7"”/(s) + 37/(s) =0

» hence, curves with constant ¢ are conics: parabolas, ellipses, and hyperbolas,
depending on whether 3z = 0, 3¢ > 0 or 3 < 0 respectively
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Mébius Transformations and Conformal Frames
The Conformal 3-Sphere

On R®, defined an indefinite quadratic form
(x,x) = —ag + af + x5 + 25 + @]

Let N be the cone of nonzero null vectors: (x,x) =0, x # 0
» under projectivization 7 : R — RP* the image of N is S3.
Proof For points on N, xg # 0, and projective coordinates y; = x;/x¢ satisfy

yi s+ +yi=1
» the group of proper linear tx preserving (, ) is SO(4,1)

This 10-dimensional group acts on S% = 7(N) by Mébius transformations.
» preserve angles, take spheres to spheres and circles to circles
» conformal moving frames reveal what else is preserved

It's convenient to make a linear change of coords on R® so that
(2,2) = 23 + 22 + 232 — 22924,

Let K ~ SO(4,1) be the group preserving this form.
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Mé&bius Geometry in s3 Mébius Transformations and Conformal Frames

Conformal Frames for S®

A matrix g belongs to K iff det(g) = 1 and its columns (e, ..., ey) satisfy

(€0, €0) = (e4,e4) =0, (€0, e4) = —1,

<ei7e0> = <ei7e4> :Ov <ei7ej> :JZJv Z7.] = 17273'
» in particular, first and last columns are null vectors . ..
» want to have frames in a fixed vector space
For p € S® let a conformal frame at p be any 5-tuple of vectors in R? satisfying
the above relations, such that

m(eo) =p

Then the mapping p : g — m(ep) lets us identify K as the conformal frame bundle
F of S3. As before, define 1-forms wy’ on F such that

dea:ebwg, a,b=0...4
> these satisfy dwy = —w? A wy (Maurer-Cartan) and
wi =0, wg =0, wi = —up,
wi = wh, wh = w?, wg:fwi-, 1,7 =1,2,3.

We'll write wt, w?, w? for semibasics wi, w3, wi respectively.
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Adapted Conformal Frames for Curves

Let 7V: R — S3 be regular, and Fy = 7V*F, with 7-dimensional fibers.

Let F1 C Fy be frames such that p.e; is tangent to 7; this has 5-dim’l fibers.
Since
deg = eowg + elwl + e2w2 + 63(4)3

)

then w? = w3 = 0 on Fi, while

0 2 3 1
de; = epw;] + eaw] + esw] + eqw

shows that w?,w? are semibasic (i.e., multiples of w!) on F7.
» adding multiples of e3, e3 to ey lets us absorb these terms

Let F» C F; be frames such that w? = w? = 0.
» fibers are 3-dimensional, acted on by

-1 1,2
€ — Aeo, e; — e + ueo, ey A (eq + per + sp7eg),
plus rotations ey — cosf ey + sinfes, e — —sinf ey + cosf es

» 1-forms w} = w) and wj = w) are semibasic on F
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Mé&bius Geometry in s3 Conformal Invariants of Curves

Moreover span{eg, e1,e4} is invariant along each fiber of Fo.

» projects under 7 to give the ‘osculating plane’ to the curve

» curves in S3 for which this is constant lie in a fixed affine plane in R?, i.e., they
are (not necessarily great) circles in 3

Assume that nowhere does 7 have higher-order contact with its osculating plane.
Then we can use the remaining fiber group to make w? equal to w' and

w® = w} =0, resulting in a unique moving frame. Let w! = ds (conformal
arclength differental); the remaining semibasics w?, w3 give invariants:

deg de; N des n des
— =e — = = keg+e —= = eg+tTe =
ds 1 ds 0 4y ds 0 3 ds

» curves with 7 = 0 lie on spheres in S3
» curves with kK = 0 and 7 = 0 are conformally equivalent to logarithmic spirals
in the plane (under stereographic projection)

de4
= —Te€y, —— = Kejt+es

ds
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Mé&bius Geometry in s3 Conformal Invariants of Surfaces

Adapted Conformal Frames for Surfaces
Let X C S be an surface, and let Fy = Fls.
First adaptation: Let F1 C Fg be sub-bundle of frames such that 7.e;, m.e2 span
the tangent space of 3. This has 5-dimensional fibers. Since
deg = egw’ + e1w' + eqw? + egw?
then w? = 0 and w!,w? span the semibasics on F;. Differentiating w® = 0 gives
0=wdAw+wdAw?

By Cartan’'s Lemma, there are functions a, b, c on F; such that

Wi = aw® + bw?, Wi = bw! + cw?.

» usual second fund. form a(w')? + c(w?)? + 2bw'w? is not conformally invariant!

However, by computing how a, b, ¢ vary along the fiber, we see that the third
fund. form

T =b(w")? = b(w?)? + (c — a)w'w?
is well-defined (up to scaling) on fibers of Fj.
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Mé&bius Geometry in s3 Conformal Invariants of Surfaces

Conformal Invariants

» lines of curvature (which are null directions for 7)) and umbilic points are
conformally invariant!

> 2-form Q = (b® + +(a — ¢)?)w! A w? is invariant along the fibers of 77, so is
well-defined on %, giving the Willmore functional

W(E):/EQ

» critical surfaces are known as Willmore immersions.

Thm (Codd Marques & Neves, 2014) Among all immersed tori in S2, the
Willmore functional is minimized by the Clifford torus.

Second Adaptation: Let F5 C F; be where a +c¢ = 0. Then wg is semibasic on
F2, and es is fixed along the 4-d fibers. This defines a conformal Gauss map
r:—aQ, IF'=moes

where Q* C R® is the quadric defined by (z,z) = 1.
» W(X) = area of the Gauss image
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Conformal Invariants of Surfoces
Third Adaptation:

Assume X is free of umbilic points. Then there is a unique conformal moving
frame such that b =0, wJ = 0 and Q = w! A w?.

» frame vector e4 maps into null cone N, & projectivizing gives a well-defined
dual surface in S3

Thm (Bryant) If X : M — S2 is a Willmore immersion, with non-umbilic points

forming an open dense subset U C M, then its dual immersion X : U — S2 is
also a Willmore immersion.

Remark Other choices of adaptations are useful in other situations:
Problem Classify surfaces ¥ C R? foliated by two orthogonal families of circles.
By adapting sections of F3 to point along these circles, one can prove:

Thm (I-) The circles must be lines of curvature (hence ¥ is a cyclide of Dupin)
unless tangents to the circles are bisected by the lines of curvature, in which case
they are also circles, and X is conformally equivalent to a Clifford torus.
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