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Control Systems

Definition

Let M be a manifold with local coordinates (t,x,u), where
x = (x1, . . . , xn) and u = (u1, . . . , um). A control system on M is
an underdetermined system of ordinary differential equations,

dx

dt
= f(t,x,u),

where f(t,x,u) = (f1(t,x,u), . . . , fn(t,x,u)). The coordinate t will
denote time, and the variables x and u are the state variables and
control variables respectively. Additionally, denote X(M) ∼= Rn to
be the state space of M with the states x as local coordinates on
X(M).

A Desired Property: Given any two points A and B in X(M) find
u(t) such that (x(t),u(t)) a solution to the control system with
x(t0) = A and x(tf ) = B. This is known broadly as controllability.

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Control Systems
Some Vague Applications
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Brunovský Normal Form

Appearances in STEM

Control systems are ubiquitous in engineering and the sciences. Some
notable examples are

Autonomous vehicles (drones, self-driving cars, submersibles,
etc.)

Robotics (Micromachines, NASA rovers and spacecraft,
manufacturing, etc.)

Medical technology (insulin pumps, pacemakers, etc.)

Economics and finance

Plasma Physics (Plasma generators for instance)

...Many More!

Taylor J. Klotz (TK)
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Example: SVE(R)IRS Epidemiology Model

Joint with M. Chyba, Y. Mileyko, and C. Shandbrom.

dS

dt
= −βS(I + αE)/n+ ωR− ϕS + ψV,

dE

dt
= βS(I + αE)/n− (σ + δ)E

+ ρβV (I + αE)/n,

dI

dt
= σE − γI,

dR

dt
= δE + γI − ωR,

dV

dt
= −ρβV (I + αE)/n+ ϕS − ψV.

S-Susceptible, E-Exposed/Asymptomatic, I-Infected, R-Recovered,
V -Vaccinated. Nine Paramters: n, α, β, γ, δ, ρ, σ, ϕ, ψ, and ω. Notice
we can reduce by R = n− S − E − I − V .

Taylor J. Klotz (TK)
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Example: SVE(R)IRS Epidemiology Model

Joint with M. Chyba, Y. Mileyko, and C. Shandbrom.

dS

dt
= −u2S(I + αE)/n+ ωR− u1S + ψV,

dE

dt
= u2S(I + αE)/n− (σ + δ)E

+ ρu2V (I + αE)/n,

dI

dt
= σE − γI,

dR

dt
= δE + γI − ωR,

dV

dt
= −ρu2V (I + αE)/n+ u1S − ψV.

S-Susceptible, E-Exposed/Asymptomatic, I-Infected, R-Recovered,
V -Vaccinated. Nine Paramters: α, u2, γ, δ, ρ, σ, u1, ψ, and ω. Notice
we can reduce by R = n− S − E − I − V .

Taylor J. Klotz (TK)
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“Solution”

S(t) = g(t)

E(t) =
1

nl
(−γωf(t)− (γ + ω)ḟ(t)

− f̈(t) + σn2ωγ),

I(t) =
1

l
(−ωf(t)− ḟ(t) + n2ωσ),

V (t) =
1

nl
(((ω + γ)σ + γ(ω + δ))f(t)

+ (σ + γ + δ + ω)ḟ(t) + f̈(t),

+ nσ(δω − γδ − γσ)g(t)

− n2σω(σ + γ + δ)),

u1(t) =
1

nS(t)
(−u2(t)S(t)(αE(t) + I(t))

+ nψV (t) + nωR(t)− nġ(t)),

u2(t) =
1

D2(t)
(nω3σR(t) + C1,EE(t)

+ C1,II(t)−
....
f (t)),

D2(t) = l(S(t) + ρV (t))(αE(t) + I(t)),

Taylor J. Klotz (TK)
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Explicitly Integrable

Definition

A controllable control system is called explicitly integrable (EI) if
generic solutions may be written as

x(t) = A(t, fi(t), ḟi(t), . . . , f
(si)
i (t)),

u(t) = B(t, fi(t), ḟi(t), . . . , f
(ri)
i (t)),

for 1 ≤ i ≤ m where m is the number of controls, fi(t) are arbitrary
smooth functions, and A and B are smooth functions.

No integration of arbitrary functions! Everything is in terms of
arbitrary functions and their derivatives. Useful for trajectory
planning.

Taylor J. Klotz (TK)
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Brunovský Normal Form

Definition

The Brunovský normal form is a linear control system

ẋ(t) = Ax+Bu,

such that matrix A is of the form

A =


A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · Am

 , Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 .

The matrix B has 1 on a diagonal position if it aligns with a row of
zeros of A. All other entries of B are zero.

Taylor J. Klotz (TK)
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Static Feedback Equivalence

Definition

Two control systems

dx

dt
= f(t,x,u) and

dy

dt
= g(t,y, v)

are static feedback equivalent (SFE) if there is a local change
coordinates of the form (t,y(t,x), v(t,x,u)) such that solutions to a
control system in one coordinate system are transformed to solutions
of the other control system via this change of coordinates (and vice
verse).

Taylor J. Klotz (TK)
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Static Feedback Linearization

Can every control system be transformed into Brunovský normal
form?

....NOPE!

Definition

A control system is static feedback linearizable (SFL) if and only if it
is SFE to a Brunovský normal form.

The problem of recognizing when a control system is SFL was
completely solved by P. Vassiliou and the proof gives an explicit
construction of such transformations. For SFL systems without the
time dependence, the question was answered by Gardner, Shadwick,
and Wilkens.

Taylor J. Klotz (TK)
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The problem of recognizing when a control system is SFL was
completely solved by P. Vassiliou and the proof gives an explicit
construction of such transformations. For SFL systems without the
time dependence, the question was answered by Gardner, Shadwick,
and Wilkens.

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Control Systems
Some Vague Applications
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Control Systems as Distributions/Pfaffian Systems

Definition

Let M be an open manifold such that M ⊂ R×X(M)×U(M), where
R has t as a local coordinate, X(M) is a manifold of dimension n
with local coordinates x = (x1, . . . , xn), and U(M) is a manifold of
dimension m with local coordinates u = (u1, . . . , um). A control
system on M may be written as the linear Pfaffian system

ω = ⟨dx1 − f1(t,x,u) dt, . . . , dxn − fn(t,x,u) dt⟩,

with independence condition dt. In the language of distributions, a
control system is given by the rank m+ 1 distribution V = annω,
which in local coordinates is given by

V = {∂t + f1(t,x,u) ∂x1 + · · ·+ fn(t,x,u) ∂xn , ∂u1 , . . . , ∂um}.

Additionally, we require that the Cauchy bundles of ω and V be trivial.

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Goursat Bundles/Partial Prolongation/Brunovaský
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Partial Prolongation/Mixed Order Jet Space

Definition

Let κ = ⟨ρ1, . . . , ρk⟩ be a list of nonegative integers with ρk ̸= 0. Then
we define a partial prolongation of J1(R,Rm) to be

Jκ(R,Rm) :=

(∏
i∈I

J i(R,Rρi)

)
/ ∼,

βκ
m :=

⊕
i∈I

βi
ρi
,

with I = {1 ≤ a ≤ k | ρa ̸= 0} and each βi
ρi

is the Brunovký form on

jet space J i(R,Rρi). The equivalence relation ‘∼’ in (7) is defined by

πi
(
J i(R,Rρi)

)
= πj

(
Jj(R,Rρj )

)
,

for all 1 ≤ i, j ≤ k, where πi, πj are source projection maps (i.e.
projection on to the t-coordinate on R). Define Cκ = annβκ

m.

Taylor J. Klotz (TK)
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Generalized Goursat Bundle

Definition

A distribution V is a generalized Goursat bundle if it is
diffeomorphism equivalent Cκ for some κ.

If V represents a control system and the diffeomorphism is a static
feedback map, then we’ll say that V is SFL. Peter Vassiliou
completely characterized nondegenerate generalized Goursat bundles
in terms of integer invariants and associated integrable subbundles
derived from V. The variable parameterizing integral curves is
determined in this process.

Are there control systems V which are not
Goursat bundles? Might such examples still be explicitly integrable?
Apply symmetry to start!

Taylor J. Klotz (TK)
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Symmetries and Dynamic Feedback Linearziation
Contact Sub-connection

Generalized Goursat Bundle

Definition

A distribution V is a generalized Goursat bundle if it is
diffeomorphism equivalent Cκ for some κ.

If V represents a control system and the diffeomorphism is a static
feedback map, then we’ll say that V is SFL. Peter Vassiliou
completely characterized nondegenerate generalized Goursat bundles
in terms of integer invariants and associated integrable subbundles
derived from V. The variable parameterizing integral curves is
determined in this process. Are there control systems V which are not
Goursat bundles? Might such examples still be explicitly integrable?
Apply symmetry to start!

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Goursat Bundles/Partial Prolongation/Brunovaský
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Control Admissible Symmetries

Definition

Let ω be a control system on a manifold M . We say a finite
dimensional local Lie group G acting freely and regularly on M with
action µ :M ×G→M is a control symmetry group if:

1 ω is invariant under the action i.e. µ∗
gω = ω for all g ∈ G,

2 the function t is invariant,
3 rank (dp(Γ)) = dimG, where p is the projection
p :M → R×X(M) given by p(t,x,u) = (t,x) where Γ is the Lie
algebra of infinitesimal generators of the action of G on M .

The group G is an admissible control symmetry group if
dimG < dimX(M) and G acts strongly transversely i.e.

Γ ∩ V(1) = {0}

where V = annω and V(1) is the first derived system.

Taylor J. Klotz (TK)
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SFL Quotient Systems

Theorem (J. De DonÁ , N. Tehseen, P. J. Vassiliou)

If V is a control system on M with admissible control symmetry G
with Lie algebra of infinitesimal gnerators Γ, then V/G is SFL if
V ⊕ Γ satisfies some easy to check rank and integrability conditions
related to the characterization of Goursat bundles.

Observation: Many control systems admitting control admissible
symmetry groups have quoteint systems that are SFL!

Taylor J. Klotz (TK)
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PVTOL System

The system for a Planar Vertical Take-Off and Landing (PVTOL)
vehicle system was introduced by Hauser, Sastry, and Meyer (1992)

ẋ = x1

ẏ = y1

θ̇ = θ1

ẋ1 = hu2 cos(θ)− u1 sin(θ)

ẏ1 = u1 cos(θ) + hu2 sin(θ)− 1

θ̇1 = u2

The PVTOL system is NOT SFL!

Taylor J. Klotz (TK)
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PVTOL Explicitly Integrable

In 1996 Martin, Devasia, and Paden discovered that if one added the
extra dynamics

z̈ = −v1 sin(θ) + v2 cos(θ) + zθ̇2

with new controls v1 and v2 related to the previous controls by

u1 = z + θ̇2 and u2 = −1

z
(v1 cos(θ) + v2 sin(θ) + 2żθ̇)

then the PVTOL control system with the above
modifications/additions is SFL! But determining the above involved
guesswork and tricky physics.

Taylor J. Klotz (TK)
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Dynamic Feedback Linearization

Definition

A control system is dynamic feedback linearizable (DFL) if there
exists an augmented system of the form

ẋ = f (t,x,u),x ∈ Rn,u ∈ Rm,

ẏ = g (t,x,y,w),y ∈ Rk,w ∈ Rq,

u = h (t,x,y,w),

such that the control system

ẋ = f (t,x,h(t,x,y,w)),

ẏ = g (t,x,y,w),

is SFL. There is also a resularity condition on the lift of integral
curves of the original system to the larger manifold for the augmented
system.

Taylor J. Klotz (TK)
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Symmetry of PVTOL

Theorem

The PVTOL control system has an eight dimensional control
admissible symmetry algebra Γalg isomorphic to a Lie algebra with
Levi decomposition

sl(2,R)⊕ s5,9,

where s5,9 is a 5-dimensional solvable Lie algebra*.

Proposition

Every 2-dimensional Lie subalgebra Λalg of Γalg such that
Λ ∩ V(2) = {0} leads to a SFL quotient of the PVTOL control system.

*- This Lie algebra can be found in the appendix of Classification and
identification of Lie algebras, by Libor Šnobl and Pavel Winternitz.

Taylor J. Klotz (TK)
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Contact sub-connection

Theorem (P.J. Vassiliou)

Let φ :M/G→ Jκ be a SFL of ω/G. Then as a local principle
G-bundle the local trivializtion φ̃ covering φ yields a Pfaffian system
γG of the form

γG = βκ ⊕ΘG

with
ΘG = span{ηa − pa(t, zκ) dt}ra=1,

where each ηa is an entry of the right Maurer-Cartan form of G, i.e.
ηa(Rb) = δab , where δ

a
b is the kronecker delta.

Taylor J. Klotz (TK)
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PVTOL Quotient
The following choice of admissible Lie subalgebra of the control
symmetry algebra of the PVTOL system

Γ = span{X1, X2}

where

X1 =h sin2(θ) cos(θ)∂x + hθ1(3 cos
2(θ)− 1) sin(θ)∂x1

+ sin2(θ)∂θ

+ (x− h sin(θ) cos2(θ))∂z + θ1 sin(2θ)∂θ1

+ (x1 + 2hθ1 cos(θ)− 3hθ1 cos
3(θ))∂z1

+ cos(θ) sin(θ)(5hθ21 − u1)∂u1 + (2θ21 cos(2θ) + u2 sin(2θ))∂u2

X2 =∂z

leads us to the contact sub-connection on J2(R,R2)×G

γG = β⟨0,2⟩⊕span

{
dϵ1 −

1 + z1
w1

dt, dϵ2 −
w1(z − w1) + w(1 + z1)

w1
dt

}
,

(z, z1, z2, w, w1, w2) make up the coordinates on J2.
Taylor J. Klotz (TK)
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Partial Contact Curve Reduction

Observe that any Brunovský normal form βκ on Jκ(R,Rm) may be

decompossed into βν ⊕ βν⊥
where κ = ν + ν⊥ entrywise and βν and

βν⊥
are Brunovský normal forms on Jν(R,Rmν ) and Jν(R,Rm

ν⊥ )

respectively where m = mν +mν⊥
. For example,

βκ = ⟨dz10 − z11 dt, dz
2
0 − z21 dt, dz

2
1 − z22 dt, dz

3
0 − z31 dt, dz

3
1 − z32 dt⟩

= ⟨dz10 − z11 dt, dz
2
0 − z21 dt, dz

2
1 − z22 dt⟩ ⊕ ⟨dz30 − z31 dt, dz

3
1 − z32 dt⟩

= βν ⊕ βν⊥
.

where κ = ⟨1, 2⟩ = ⟨1, 1⟩+ ⟨0, 1⟩ with ν = ⟨1, 1⟩ and ν⊥ = ⟨0, 1⟩.

Taylor J. Klotz (TK)
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Partial Contact Curve Reduction (cont.)

Definition

We say that a submanifold Σν
f ⊂ Jκ×G is a codimension s partial

contact curve of βκ = βν ⊕ βν⊥
if Σν

f is an integral manifold of βν

and s is the sum of the entries in ν. It is the image of a map

cνf : Jν⊥
×G→ Jκ ×G

defined by

cνf (t, z
ν⊥
, ε) = (t, jνf (t), z

ν⊥
, ε),

where zν⊥
represents the local contact coordinates on Jν⊥

, jνf (t)
represents the integral curve of βν corresponding to the jet of some
smooth function f : R → Rmν , and ε represents local coordinates on
G. We refer to a system γG restricted to the family of such
submanifolds as f ranges over the space of generic smooth functions
as a partial contact curve reduction of γG and denote it by γ̄G.

Taylor J. Klotz (TK)
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PVTOL Partial Contact Curve Reduction

Let us consider the family of maps c
⟨0,1⟩
f = J⟨0,1⟩ ×G→ J⟨0,1⟩ ×G

parameterized by generic smooth fs such that(
c
⟨0,1⟩
f

)∗
span{dw − dw1 dt, dw1 − w2 dt} = {0},

i.e. we’ve restricted to the family of submanifolds defiend by
(w = f(t), w1 = ḟ(t), w2 = f̈(t)). Then

γ̄G =
(
c
⟨0,1⟩
f

)∗
γG,

= β⟨0,1⟩ ⊕ span

{
dε1 −

1 + z1

ḟ(t)
dt, dε2 −

ḟ(t)(z − ḟ(t)) + f(t)(1 + z1)

ḟ(t)
dt

}
.

Remarkably, γ̄G is SFL for generic f(t)!
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Cascade Feedback Linearization

Definition

A control system ω is cascade feedback linearizable if it possess a SFL
quotient system by an admissible control symmetry group and the
associated contact sub-connection admits a SFL partial contact curve
reduction.

CFL systems are explicitly integrable! Moreover,

Theorem (J Clelland, T. Klotz, P.J. Vassiliou)

A CFL control system yields explicit formulas for constructing a DFL.
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Cascade Feedback Linearization and Dynamic Feedback
Linearization
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Future Work and Promising Thoughts

Are all DFL systems with control admissible symmmetries CFL?

Is there a notion of curvature for the contact sub-connection?
Yes! Can it be used to detect an ESFL partial contact curve
reduction?

Are there global topological constraints on closed orbits of
nonlinear control systems? I.e. an Arnold type conjecture.

Applications!

Explore equivalence problems concerning the contact
sub-connections i.e. when are γH and γG ESF equivalent?

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Partial Contact Curve Reduction
Diagram!

Future Work and Promising Thoughts

Are all DFL systems with control admissible symmmetries CFL?

Is there a notion of curvature for the contact sub-connection?
Yes! Can it be used to detect an ESFL partial contact curve
reduction?

Are there global topological constraints on closed orbits of
nonlinear control systems? I.e. an Arnold type conjecture.

Applications!

Explore equivalence problems concerning the contact
sub-connections i.e. when are γH and γG ESF equivalent?

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Partial Contact Curve Reduction
Diagram!

Future Work and Promising Thoughts

Are all DFL systems with control admissible symmmetries CFL?

Is there a notion of curvature for the contact sub-connection?
Yes! Can it be used to detect an ESFL partial contact curve
reduction?

Are there global topological constraints on closed orbits of
nonlinear control systems? I.e. an Arnold type conjecture.

Applications!

Explore equivalence problems concerning the contact
sub-connections i.e. when are γH and γG ESF equivalent?

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Partial Contact Curve Reduction
Diagram!

Future Work and Promising Thoughts

Are all DFL systems with control admissible symmmetries CFL?

Is there a notion of curvature for the contact sub-connection?
Yes! Can it be used to detect an ESFL partial contact curve
reduction?

Are there global topological constraints on closed orbits of
nonlinear control systems? I.e. an Arnold type conjecture.

Applications!

Explore equivalence problems concerning the contact
sub-connections i.e. when are γH and γG ESF equivalent?

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Partial Contact Curve Reduction
Diagram!

Future Work and Promising Thoughts

Are all DFL systems with control admissible symmmetries CFL?

Is there a notion of curvature for the contact sub-connection?
Yes! Can it be used to detect an ESFL partial contact curve
reduction?

Are there global topological constraints on closed orbits of
nonlinear control systems? I.e. an Arnold type conjecture.

Applications!

Explore equivalence problems concerning the contact
sub-connections i.e. when are γH and γG ESF equivalent?

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Partial Contact Curve Reduction
Diagram!

Thanks!
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[3] J. De Doná, N. Tehseen, P. Vassiliou, Symmetry reduction, contact
geometry and partial feedback linearization, SIAM J. Control Optim.,
56(1), 201–230, (2018)

[4] J. Hauser, S. Sastry, G. Meyer, Nonlinear control design for
slightly nonminimum phase systems: Application to v/stol aircraft.
Automatica, 28, 665-679, (1992).
593–623, (2018);

Taylor J. Klotz (TK)



Control Systems and Explicit Integrability
Symmetry and Geometry of Control Systems

Cascade Feedback Linearization

Partial Contact Curve Reduction
Diagram!

References (cont.)

[5] P. Martin, S. Devasia, B. Paden, A different look at output
tracking: control of a VTOL aircraft, Automatica, 32(1), 101-107,
(1996)

[6] P. Vassiliou, Efficient construction of contact coordinates for
partial prolongations, Foundations of Computational Mathematics,
(2006), 269-308

[7] P. Vassiliou, Cascade linearization of invariant control systems, J.
Dyn. Control Syst., 24(4),

Taylor J. Klotz (TK)


	Control Systems and Explicit Integrability
	Control Systems
	Some Vague Applications
	Brunovský Normal Form

	Symmetry and Geometry of Control Systems
	Goursat Bundles/Partial Prolongation/Brunovaský
	Symmetries and Dynamic Feedback Linearziation
	Contact Sub-connection

	Cascade Feedback Linearization
	Partial Contact Curve Reduction
	Diagram!


