Introduction G-structures Algebroids Realization problem An example

General Theory

Example: solutions

The geometry of Cartan's realization problems

Rui Loja Fernandes

Department of Mathematics University of Illinois at Urbana-Champaign, USA

Symmetry, Invariants and their Applications A Celebration of Peter Olver's 70th Birthday Halifax, August, 2022

University of Minnesota c. 1990

Rui Loja Fernandes The geometry of Cartan's realization problems

Some words from our guru:

Chapter 8

Equivalence of Coframes

By definition, a coframe on a manifold is a "complete" collection of one-forms in the sense that, at each point, it provides a basis for the cotangent space. Two coframes are said to be equivalent if they are mapped to each other by a diffeomorphism. The equivalence problem for coframes is, in fact, the most important of the equivalence problems that we are to treat, because it ultimately includes all the others as special cases. Indeed, the remarkable and powerful Cartan equivalence method, [39], [78], [230], provides an *explicit*, *practical* algorithm for reducing most other equivalence problems to an equivalence problem for a suitable coframe. (The exceptions are those problems admitting an infinite dimensional symmetry group, which will be handled by similar, but more sophisticated methods to be discussed later on.) Therefore, it is crucial that we learn how to deal properly with this apparently special, but, in reality, quite general equivalence problem. In this chapter, we

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions

Main message

Lie groupoids and Lie algebroids (with extra structure) provide the right language to solve equivalence problems.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions

Main message

Lie groupoids and Lie algebroids (with extra structure) provide the right language to solve equivalence problems.

This tutorial talk aims at sketching this program.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
0000						

Main message

Lie groupoids and Lie algebroids (with extra structure) provide the right language to solve equivalence problems.

This tutorial talk aims at sketching this program.

Based on joint work with Peter's grand child Ivan Struchiner (USP):

- The Classifying Lie Algebroid of a Geometric Structure I: Classes of Coframes. Transactions of the AMS 366 (2014), 2419–2462.
- The Classifying Lie Algebroid of a Geometric Structure II: G-structures with connection. São Paulo J. Math. Sci. 15 (2021), 524–570.
- The Global Solutions to a Cartan's Realization Problem arXiv:1907.13614.

Inspired by:

- R. Bryant, Bochner-Kähler metrics. J. Amer. Math. Soc. 14 (2001), 623-715.
- P. Olver, *Equivalence, Invariants, and Symmetry*, Cambridge University Press, Cambridge, UK, 1995.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
0000						

Overview

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures(with connection)

The main steps of the program:

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
0000						

Overview

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures(with connection)

The main steps of the program:

Classification problem for \longleftrightarrow *G*-structure algebroid (with connection)

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
0000						

Overview

Starting from the classical correspondence:

Geometric structures \longleftrightarrow *G*-structures(with connection)

The main steps of the program:

 $\begin{array}{ccc} \text{Classification problem for} & \longleftrightarrow & G\text{-structure algebroid} \\ \text{class of geometric structures} & & (with connection) \\ & &$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
	00000					

Notation:

- M manifold with dim M = n
- $\pi : F(M) \rightarrow M$ frame bundle of *M*:

 $\pi^{-1}(x) = \{ p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism} \}$

• $G \subset GL_n(\mathbb{R})$ closed Lie group

Notation:

- M manifold with dim M = n
- $\pi : F(M) \rightarrow M$ frame bundle of *M*:

 $\pi^{-1}(x) = \{ p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism} \}$

• $G \subset \operatorname{GL}_n(\mathbb{R})$ closed Lie group

Definition

A *G*-structure is a *G*-invariant submanifold $P \subset F(M)$ such that $\pi : P \to M$ is a principal *G*-bundle

Notation:

- M manifold with dim M = n
- $\pi : F(M) \rightarrow M$ frame bundle of *M*:

 $\pi^{-1}(x) = \{ p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism} \}$

• $G \subset \operatorname{GL}_n(\mathbb{R})$ closed Lie group

Definition

A G-structure is a G-invariant submanifold $P \subset F(M)$ such that $\pi : P \to M$ is a principal G-bundle

A diffeomorphism $\phi : M_1 \to M_2$ lifts to an isomorphism: $\phi_* : F(M_1) \to F(M_2)$.

Notation:

- M manifold with dim M = n
- $\pi : F(M) \rightarrow M$ frame bundle of *M*:

 $\pi^{-1}(x) = \{ p : \mathbb{R}^n \to T_x M : \text{ linear isomorphism} \}$

• $G \subset \operatorname{GL}_n(\mathbb{R})$ closed Lie group

Definition

A G-structure is a G-invariant submanifold $P \subset F(M)$ such that $\pi : P \to M$ is a principal G-bundle

A diffeomorphism $\phi : M_1 \to M_2$ lifts to an isomorphism: $\phi_* : F(M_1) \to F(M_2)$.

Definition

Given *G*-structures $P_1 \subset F(M_1)$ and $P_2 \subset F(M_2)$, a *G*-equivalence is a diffeomorphism $\phi : M_1 \to M_2$ such that:

$$\phi_*(P_1)=P_2.$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
	00000					

Given two *G*-structures $P_i \rightarrow M_i$, when is a *G*-principal bundle isomorphism $P_1 \rightarrow P_2$ a *G*-equivalence?

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
	00000					

Given two *G*-structures $P_i \rightarrow M_i$, when is a *G*-principal bundle isomorphism $P_1 \rightarrow P_2$ a *G*-equivalence?

The frame bundle carries a tautological form $\theta \in \Omega^1(F(M), \mathbb{R}^n)$:

 $\theta_p(\xi) = p^{-1}(d_p\pi(\xi)) \quad (p \in F(M))$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
	00000					

Given two *G*-structures $P_i \rightarrow M_i$, when is a *G*-principal bundle isomorphism $P_1 \rightarrow P_2$ a *G*-equivalence?

The frame bundle carries a tautological form $\theta \in \Omega^1(F(M), \mathbb{R}^n)$:

$$\theta_p(\xi) = p^{-1}(d_p\pi(\xi)) \quad (p \in F(M))$$

 \implies tautological form on any *G*-structure $\theta \in \Omega^1(P, \mathbb{R}^n)$

IntroductionG-structuresAlgebroidsRealization problemAn exampleGeneral TheoryExample: solutions00000000000000000000000000000000000

Tautological form

Given two *G*-structures $P_i \rightarrow M_i$, when is a *G*-principal bundle isomorphism $P_1 \rightarrow P_2$ a *G*-equivalence?

The frame bundle carries a tautological form $\theta \in \Omega^1(F(M), \mathbb{R}^n)$:

$$\theta_p(\xi) = p^{-1}(\mathbf{d}_p \pi(\xi)) \quad (p \in \mathrm{F}(M))$$

 \implies tautological form on any *G*-structure $\theta \in \Omega^1(P, \mathbb{R}^n)$

Theorem

A principal bundle isomorphism

$$\begin{array}{c} P_1 \longrightarrow P_2 \\ \downarrow & \downarrow \\ M_1 \longrightarrow M_2 \end{array}$$

is an equivalence of G-structures if and only if $\Phi^*\theta_2 = \theta_1$.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
	00000					

When is a *G*-principal bundle $P \rightarrow M$ a *G*-structure?

When is a *G*-principal bundle $P \rightarrow M$ a *G*-structure?

Given *G*-structure $P \subset F(M)$, the tautological form $\theta \in \Omega^1(P, \mathbb{R}^n)$ satisfies:

- **1** Strongly horizontal: $\theta_p(v) = 0$ iff $v = \tilde{\alpha}|_p$, for some $\alpha \in \mathfrak{g}$
- **2** *G*-equivariant: $g^*\theta = g^{-1} \cdot \theta$, for all $g \in G$
- **3** Pointwise surjective: $\theta_p : T_p F_G(M) \to \mathbb{R}^n$

When is a *G*-principal bundle $P \rightarrow M$ a *G*-structure?

Given *G*-structure $P \subset F(M)$, the tautological form $\theta \in \Omega^1(P, \mathbb{R}^n)$ satisfies:

- **1** Strongly horizontal: $\theta_p(v) = 0$ iff $v = \tilde{\alpha}|_p$, for some $\alpha \in \mathfrak{g}$
- **2** *G*-equivariant: $g^*\theta = g^{-1} \cdot \theta$, for all $g \in G$
- **3** Pointwise surjective: $\theta_p : T_p F_G(M) \to \mathbb{R}^n$

Theorem

If $\pi : P \to M$ is a *G*-principal bundle with $G \subset GL_n(\mathbb{R})$ and $\theta_P \in \Omega^1(P, \mathbb{R}^n)$ satisfies 1-3, then there exists a unique embedding of principal bundles

$$i: P \hookrightarrow F(M), \qquad i^*\theta = \theta_P.$$

A form θ_P satisfying 1-3 will also be call a **tautological form**.

Examples of G-structures

- Coframes $\iff \{e\}$ -structures;
- **Riemannian structures** \iff O_n-structures;
- Almost symplectic structures \iff Sp_n-structures;
- Almost complex structures \iff GL_n(\mathbb{C})-structures;
- Almost hermitian structures \iff U_n-structures.

Examples of G-structures

- Coframes $\iff \{e\}$ -structures;
- **Riemannian structures** \iff O_n-structures;
- Almost symplectic structures \iff Sp_n-structures;
- Almost complex structures \iff GL_n(\mathbb{C})-structures;
- Almost hermitian structures \iff U_n-structures.

Definition

A *G*-structure $P \to M$ is called integrable if it is locally equivalent to the trivial *G*-structure $\mathbb{R}^n \times G \subset F(\mathbb{R}^n)$.

Examples of G-structures

- Coframes $\iff \{e\}$ -structures;
- **Riemannian structures** \iff O_n-structures;
- Almost symplectic structures \iff Sp_n-structures;
- Almost complex structures \iff GL_n(\mathbb{C})-structures;
- Almost hermitian structures \iff U_n-structures.

Definition

A *G*-structure $P \to M$ is called integrable if it is locally equivalent to the trivial *G*-structure $\mathbb{R}^n \times G \subset F(\mathbb{R}^n)$.

- Integrable O_n-structures ⇐⇒ flat Riemannian structures;
- Integrable Sp_n -structures \iff symplectic structures ;
- Integrable $GL_n(\mathbb{C})$ -structures \iff complex structures;
- Integrable U_n -structures \iff flat Kähler structures.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
	000000					

Definition

A connection on $P \to M$ is a 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying:

1 Vertical:
$$\omega(\widetilde{\alpha}) = \alpha$$
, for all $\alpha \in \mathfrak{g}$;

2 G-equivariant:
$$g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$$
, for all $g \in G$.

Definition

A connection on $P \to M$ is a 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying:

1 Vertical:
$$\omega(\widetilde{\alpha}) = \alpha$$
, for all $\alpha \in \mathfrak{g}$;

2 *G*-equivariant: $g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$, for all $g \in G$.

If (P, θ, ω) is a *G*-structure with connection:

$$(\theta,\omega)_{\rho}: T_{\rho}P \xrightarrow{\sim} \mathbb{R}^n \oplus \mathfrak{g}$$

Definition

A connection on $P \to M$ is a 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying:

```
1 Vertical: \omega(\widetilde{\alpha}) = \alpha, for all \alpha \in \mathfrak{g};
```

2 *G*-equivariant: $g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$, for all $g \in G$.

If (P, θ, ω) is a *G*-structure with connection:

$$(\theta,\omega)_{\rho}: T_{\rho}P \xrightarrow{\sim} \mathbb{R}^n \oplus \mathfrak{g}$$

 \implies (θ, ω) is a coframe

Definition

A connection on $P \to M$ is a 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying:

- **1** Vertical: $\omega(\widetilde{\alpha}) = \alpha$, for all $\alpha \in \mathfrak{g}$;
- **2** *G*-equivariant: $g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$, for all $g \in G$.

If (P, θ, ω) is a *G*-structure with connection:

$$(\theta,\omega)_{\rho}: T_{\rho}P \xrightarrow{\sim} \mathbb{R}^n \oplus \mathfrak{g}$$

 \implies (θ, ω) is a **coframe** which satisfies the structure equations:

$$\begin{cases} d\theta = T(\theta \land \theta) - \omega \land \theta \\ d\omega = R(\theta \land \theta) - \omega \land \omega \end{cases}$$

Definition

1

A connection on $P \to M$ is a 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying:

- *Vertical:* $\omega(\widetilde{\alpha}) = \alpha$, for all $\alpha \in \mathfrak{g}$;
- **2** *G*-equivariant: $g^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$, for all $g \in G$.

If (P, θ, ω) is a *G*-structure with connection:

$$(\theta,\omega)_{\rho}: T_{\rho}P \xrightarrow{\sim} \mathbb{R}^n \oplus \mathfrak{g}$$

 \implies (θ, ω) is a **coframe** which satisfies the structure equations:

$$\begin{cases} d\theta = T(\theta \land \theta) - \omega \land \theta \\ d\omega = R(\theta \land \theta) - \omega \land \omega \end{cases}$$

where:

- $T: P \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$ torsion
- $R: P \to \operatorname{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ curvature

Equivalence of G-structures with connection

 $(P_i, \theta_i, \omega_i) - G$ -structures with connection

Definition

A (local) equivalence is a (local) *G*-bundle isomorphism $\phi : P_1 \rightarrow P_2$ which preserves the coframes:

$$\phi^*\theta_2=\theta_1,\quad \phi^*\omega_2=\omega_1.$$

Equivalence of G-structures with connection

 $(P_i, \theta_i, \omega_i) - G$ -structures with connection

Definition

A (local) equivalence is a (local) *G*-bundle isomorphism $\phi : P_1 \rightarrow P_2$ which preserves the coframes:

$$\phi^*\theta_2 = \theta_1, \quad \phi^*\omega_2 = \omega_1.$$

Equivalence problem:

■ When are two G-structures with connection (locally) equivalent?

IntroductionG-structuresAlgebroids
•ooooRealization problemAn example
oooGeneral Theory
ooooExample: solutions
oooo

Some more words from our guru:

The Structure Functions 257

to each other by a diffeomorphism $\Phi: M \to \overline{M}$, so that

$$\Phi^* \,\overline{\theta}{}^i = \theta^i, \qquad i = 1, \dots, m. \tag{8.7}$$

In our treatment, we shall only look at *local equivalence*, meaning that the diffeomorphism Φ is only required to be defined on a suitable open subset of M— see the end of Chapter 14 for some remarks on the global equivalence problem. Cartan made the fundamental observation that the invariance of the exterior derivative operator d under smooth maps, cf. Theorem 1.36, is the key to the solution of the coframe equivalence problem. Thus, if (8.7) holds, we also necessarily have

$$\Phi^* d\overline{\theta}^i = d\theta^i, \qquad i = 1, \dots, m.$$
(8.8)

The solution to the equivalence problem for coframes lies in the detailed analysis of the differentiated conditions (8.8).

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		00000				

Invariant forms

 $(P, \theta, \omega) - G$ -structure with connection

Definition

A form $\alpha \in \Omega^k(P)$ is called invariant if for every local equivalence $\phi : P \to P$:

 $\phi^*\alpha = \alpha.$

We denote by $\Omega^{\bullet}(P, \theta, \omega)$ the space of invariant forms.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		00000				

Invariant forms

 $(P, \theta, \omega) - G$ -structure with connection

Definition

A form $\alpha \in \Omega^k(P)$ is called invariant if for every local equivalence $\phi : P \to P$:

 $\phi^*\alpha = \alpha.$

We denote by $\Omega^{\bullet}(P, \theta, \omega)$ the space of invariant forms.

Basic Remark: $\Omega^{\bullet}(P, \theta, \omega)$ is preserved under exterior differentiation.

$$\alpha \in \Omega^{\bullet}(\boldsymbol{P}, \theta, \omega) \implies d\alpha \in \Omega^{\bullet}(\boldsymbol{P}, \theta, \omega)$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		00000				

Fully regular G-structures

Definition

 (P, θ, ω) is called fully regular when the spaces

$$\Big\{ \mathrm{d}_{\mathcal{P}} I : I \in \Omega^{0}(\mathcal{P}, \theta, \omega) \} \subset T_{\mathcal{P}}^{*} \mathcal{P} \Big\},$$

have constant dimension (independent of $p \in P$).

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		00000				

Fully regular G-structures

Definition

 (P, θ, ω) is called fully regular when the spaces

$$\Big\{ \mathrm{d}_{\rho} I : I \in \Omega^{0}(P, \theta, \omega) \} \subset T^{*}_{\rho} P \Big\},$$

have constant dimension (independent of $p \in P$).

If (P, θ, ω) is fully regular, \exists space $X_{(\theta, \omega)}$ & submersion $h : P \to X_{(\theta, \omega)}$ so that:

 $\Omega^{0}(P, \theta, \omega) = h^{*}C^{\infty}(X_{(\theta, \omega)}).$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		00000				

Fully regular G-structures

Definition

 (P, θ, ω) is called fully regular when the spaces

$$\Big\{ \mathrm{d}_{p} I : I \in \Omega^{0}(P, \theta, \omega) \} \subset T_{p}^{*} P \Big\},$$

have constant dimension (independent of $p \in P$).

If (P, θ, ω) is fully regular, \exists space $X_{(\theta, \omega)}$ & submersion $h : P \to X_{(\theta, \omega)}$ so that: $\Omega^{0}(P, \theta, \omega) = h^{*} C^{\infty}(X_{(\theta, \omega)}).$

In fact, more is true:

Proposition

For a fully regular G-structure with connection (P, θ, ω) :

$$\Omega^{\bullet}(P,\theta,\omega) \simeq \Omega^{\bullet}(A_{(\theta,\omega)}) := \Gamma(\wedge^{\bullet}A^{*}_{(\theta,\omega)}),$$

where $A_{(\theta,\omega)} = X_{(\theta,\omega)} \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X_{(\theta,\omega)}$.
Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		000000				

It follows that for a fully regular (P, θ, ω) we have:

- A vector bundle $A \rightarrow X$;
- a linear operator $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A);$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		000000				

It follows that for a fully regular (P, θ, ω) we have:

• A vector bundle $A \rightarrow X$;

a linear operator
$$d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A);$$

satisfying:

1
$$d_A^2 = 0;$$

2
$$d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta.$$

It follows that for a fully regular (P, θ, ω) we have:

• A vector bundle $A \rightarrow X$;

a linear operator
$$d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A);$$

satisfying:

1 $d_A^2 = 0;$

2 $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta.$

This is what is called a Lie algebroid, though it is more commonly defined as:

It follows that for a fully regular (P, θ, ω) we have:

- A vector bundle $A \rightarrow X$;
- a linear operator $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A);$

satisfying:

1 $d_A^2 = 0;$

2 $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta.$

This is what is called a Lie algebroid, though it is more commonly defined as:

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$ with:

- A Lie bracket $[\cdot, \cdot]_A$; $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- A bundle map $\rho_A : A \to TM$;

satisfying the Leibniz identity:

$$[s_1, f s_2]_A = f[s_1, s_2]_A + \rho(s_1)(f) s_2.$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		000000				

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$ with:

- A Lie bracket $[\cdot, \cdot]_A$; $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- A anchor map $\rho_A : A \to TM$;

satisfying:

 $[s_1, f s_2]_A = f[s_1, s_2]_A + \rho(s_1)(f) s_2.$

Main idea: Think of $(A, [\cdot, \cdot]_A, \rho_A)$ as a generalized tangent bundle.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		000000				

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$ with:

- A Lie bracket $[\cdot, \cdot]_A$; $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- A anchor map $\rho_A : A \to TM$;

satisfying:

$$[s_1, f s_2]_A = f[s_1, s_2]_A + \rho(s_1)(f) s_2.$$

Main idea: Think of $(A, [\cdot, \cdot]_A, \rho_A)$ as a generalized tangent bundle.

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$ with a linear operator:

$$\mathrm{d}_{A}: \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A),$$

satisfying:

1
$$d_A^2$$

= 0;

2
$$d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta.$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		000000				

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$ with:

- A Lie bracket $[\cdot, \cdot]_A$; $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- A anchor map $\rho_A : A \to TM$;

satisfying:

$$[s_1, f s_2]_A = f[s_1, s_2]_A + \rho(s_1)(f) s_2.$$

The A-forms $\Omega^{\bullet}(A) := \Gamma(\wedge^{\bullet}A^{*})$ inherit a differential $d_{A} : \Omega^{k}(A) \to \Omega^{k+1}(A)$:

$$d_{\mathcal{A}}\alpha(s_0,\ldots,s_k) = \sum_{i} (-1)^i \rho_{\mathcal{A}}(s_i)(\alpha(s_0,\ldots,\widehat{s_i},\ldots,s_k)) + \sum_{i< j} (-1)^{i+j} \alpha([s_i,s_j]_{\mathcal{A}},s_0,\ldots,\widehat{s_i},\ldots,\widehat{s_j},\ldots,s_k)$$

satisfying:

$$\mathbf{d}_{A}^{2}=\mathbf{0}, \qquad \mathbf{d}_{A}(\alpha \wedge \beta)=\mathbf{d}_{A}\alpha \wedge \beta+(-1)^{|\alpha|}\alpha \wedge \mathbf{d}_{A}\beta.$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
		000000				

Definition

A Lie algebroid is a vector bundle $A \rightarrow X$ with a linear operator

$$\mathrm{d}_{A}: \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A),$$

satisfying:

1
$$d_A^2 = 0;$$

2 $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta.$

One defines the anchor $\rho_A : A \to TM$ and Lie bracket $[\cdot, \cdot]_A$ on $\Gamma(A)$ by:

$$\begin{split} \rho_{\mathcal{A}}(\boldsymbol{s})(f) &:= \mathrm{d}_{\mathcal{A}}f(\boldsymbol{s}), \\ \langle [\boldsymbol{s}_1, \boldsymbol{s}_2]_{\mathcal{A}}, \alpha \rangle &:= \mathrm{d}_{\mathcal{A}}(\alpha(\boldsymbol{s}_2)))(\boldsymbol{s}_1) - \mathrm{d}_{\mathcal{A}}(\alpha(\boldsymbol{s}_1)))(\boldsymbol{s}_2) - \mathrm{d}_{\mathcal{A}}\alpha(\boldsymbol{s}_1, \boldsymbol{s}_2) \end{split}$$

satisfying:

$$[s_1, f s_2]_A = f[s_1, s_2]_A + \rho(s_1)(f) s_2.$$

Introduction	G-structures	Algebroids ○○○○○●	Realization problem	An example	General Theory	Example: solutions

Summary

Given (P, θ, ω) a fully regular *G*-structure with connection, we have a classifying Lie algebroid $A_{(\theta,\omega)} \rightarrow X_{(\theta,\omega)}$ and a classifying bundle map:

such that:

$$\Omega^{\bullet}(\boldsymbol{P},\theta,\omega) = H^* \Omega^{\bullet}(\boldsymbol{A}_{(\theta,\omega)}).$$

Introduction	G-structures	Algebroids ○○○○○●	Realization problem	An example	General Theory	Example: solutions

Summary

Given (P, θ, ω) a fully regular *G*-structure with connection, we have a classifying Lie algebroid $A_{(\theta,\omega)} \rightarrow X_{(\theta,\omega)}$ and a classifying bundle map:

such that:

$$\Omega^{\bullet}(\boldsymbol{P},\theta,\omega) = H^* \Omega^{\bullet}(\boldsymbol{A}_{(\theta,\omega)}).$$

Moreover:

- (*H*, *h*) is a Lie algebroid map: $H^*(d_A \alpha) = d(H^* \alpha), \forall \alpha \in \Omega^{\bullet}(A_{(\theta, \omega)});$
- TP and $A_{(\theta,\omega)}$ carry G-actions by Lie algebroid automorphisms for which (H, h) is G-equivariant;

•
$$A_{(\theta,\omega)}$$
 is a transitive Lie algebroid: Im $\rho = TX_{(\theta,\omega)}$.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
			000			

In a classification problem one is not given, a priori, *one G*-structure. Rather, one has differential equations determining a *family* of *G*-structures.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
			000			

In a classification problem one is not given, a priori, *one G*-structure. Rather, one has differential equations determining a *family* of *G*-structures.

One seeks all *G*-structures $P \rightarrow M$, satisfying structure eqs:

$$d\theta = T(\theta \wedge \theta) - \omega \wedge \theta, \quad d\omega = R(\theta \wedge \theta) - \omega \wedge \omega \tag{1}$$

where possible values of torsion and curvature are constrained:

In a classification problem one is not given, a priori, *one G*-structure. Rather, one has differential equations determining a *family* of *G*-structures.

One seeks all *G*-structures $P \rightarrow M$, satisfying structure eqs:

$$d\theta = T(\theta \wedge \theta) - \omega \wedge \theta, \quad d\omega = R(\theta \wedge \theta) - \omega \wedge \omega$$
(1)

where possible values of torsion and curvature are constrained:

There is *G*-equivariant map $h: P \to X$ into *G*-manifold *X* such that torsion and curvature factor through *X*:

$$R = R(h)$$
 $T = T(h)$,

for *G*-equivariant maps $R : X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ and $T : X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$.

In a classification problem one is not given, a priori, *one G*-structure. Rather, one has differential equations determining a *family* of *G*-structures.

One seeks all *G*-structures $P \rightarrow M$, satisfying structure eqs:

$$d\theta = T(\theta \wedge \theta) - \omega \wedge \theta, \quad d\omega = R(\theta \wedge \theta) - \omega \wedge \omega$$
(1)

where possible values of torsion and curvature are constrained:

There is *G*-equivariant map $h: P \to X$ into *G*-manifold *X* such that torsion and curvature factor through *X*:

$$R=R(h)\quad T=T(h),$$

for *G*-equivariant maps $R : X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ and $T : X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$.

Since (θ, ω) is a coframe, $h : P \to X$ also satisfies structure equations:

$$dh = F(h,\theta) + \psi(h,\omega), \tag{2}$$

where $F: X \times \mathbb{R}^n \to TX$ is *G*-equivariant and $\psi: X \times \mathfrak{g} \to TX$ is g-action.

Cartan's Realization Problem

One is given Cartan Data:

- a closed Lie subgroup $G \subset GL(n, \mathbb{R})$;
- a *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- equivariant maps $T: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$, $R: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ and $F: X \times \mathbb{R}^n \to TX$;

Cartan's Realization Problem

One is given Cartan Data:

- a closed Lie subgroup $G \subset GL(n, \mathbb{R})$;
- a *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- equivariant maps $T: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$, $R: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ and $F: X \times \mathbb{R}^n \to TX$;

One seek solutions:

- an n-dimensional orbifold *M*;
- a *G*-structure $P \to M$ with tautological form $\theta \in \Omega^1(P, \mathbb{R}^n)$ and connection 1-form $\omega \in \Omega^1(P, \mathfrak{g})$;
- an equivariant map $h: P \rightarrow X$;

satisfying:

$$d\theta = T(h)(\theta \land \theta) - \omega \land \theta,$$

$$d\omega = R(h)(\theta \land \theta) - \omega \land \omega$$

$$dh = F(h, \theta) + \psi(h, \omega).$$

Cartan's Realization Problem

One is given Cartan Data:

- a closed Lie subgroup $G \subset GL(n, \mathbb{R})$;
- a *G*-manifold *X* with infinitesimal action $\psi : X \times \mathfrak{g} \to TX$;
- equivariant maps $T: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathbb{R}^n)$, $R: X \to \text{Hom}(\wedge^2 \mathbb{R}^n, \mathfrak{g})$ and $F: X \times \mathbb{R}^n \to TX$;

One seek solutions:

- an n-dimensional orbifold *M*;
- a *G*-structure $P \to M$ with tautological form $\theta \in \Omega^1(P, \mathbb{R}^n)$ and connection 1-form $\omega \in \Omega^1(P, \mathfrak{g})$;
- an equivariant map $h: P \rightarrow X$;

satisfying:

 $\begin{aligned} \mathrm{d}\theta &= T(h)(\theta \wedge \theta) - \omega \wedge \theta, \\ \mathrm{d}\omega &= R(h)(\theta \wedge \theta) - \omega \wedge \omega \\ \mathrm{d}h &= F(h,\theta) + \psi(h,\omega). \end{aligned}$

Again, these can be interpreted in terms of a Lie algebroid!

Take trivial vector bundle: $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$.

Take trivial vector bundle: $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$.

- Cartan data gives:
 - A linear operator $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet}(A)$: on 0-forms and 1-forms are given by equations and extends to any k-form by $d_A(\alpha \land \beta) = d_A \alpha \land \beta + (-1)^{|\alpha|} \alpha \land d_A \beta$.

Take trivial vector bundle: $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$.

- Cartan data gives:
 - A linear operator $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet}(A)$: on 0-forms and 1-forms are given by equations and extends to any k-form by $d_A(\alpha \land \beta) = d_A \alpha \land \beta + (-1)^{|\alpha|} \alpha \land d_A \beta$.

Alternatively:

A bracket on $\Gamma(A)$:

$$[(u,\alpha),(v,\beta)] = (\alpha \cdot v - \beta \cdot u - T(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(u,v)),$$

• A bundle map $\rho : A \to TX$:

 $\rho(u,\alpha) = F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g}.$

Take trivial vector bundle: $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$.

- Cartan data gives:
 - A linear operator $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet}(A)$: on 0-forms and 1-forms are given by equations and extends to any k-form by $d_A(\alpha \land \beta) = d_A \alpha \land \beta + (-1)^{|\alpha|} \alpha \land d_A \beta$.

Alternatively:

• A bracket on $\Gamma(A)$:

$$[(u,\alpha),(v,\beta)] = (\alpha \cdot v - \beta \cdot u - T(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(u,v)),$$

• A bundle map $\rho : A \to TX$:

$$\rho(u,\alpha) = F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g}.$$

- A solution (P, θ, ω) is a *G*-principal bundle together with *G*-equivariant algebroid map:

Take trivial vector bundle: $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$.

- Cartan data gives:
- A linear operator $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet}(A)$: on 0-forms and 1-forms are given by equations and extends to any k-form by $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta$. Alternatively:
 - A bracket on Γ(A):

$$[(u,\alpha),(v,\beta)] = (\alpha \cdot v - \beta \cdot u - T(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(u,v)),$$

• A bundle map $\rho : A \rightarrow TX$:

$$\rho(u,\alpha) = F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g}.$$

- A solution (P, θ, ω) is a *G*-principal bundle together with *G*-equivariant algebroid map:

$$\begin{array}{c} TP \xrightarrow{H} A \\ \downarrow \\ P \xrightarrow{h} X \end{array}$$

Proposition

There exists a solution through every $x \in X$ if and only if $A \to X$ is a Lie algebroid.

Take trivial vector bundle: $A = X \times (\mathbb{R}^n \oplus \mathfrak{g}) \to X$.

- Cartan data gives:
- A linear operator $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet}(A)$: on 0-forms and 1-forms are given by equations and extends to any k-form by $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta$. Alternatively:
 - A bracket on Γ(A):

$$[(u,\alpha),(v,\beta)] = (\alpha \cdot v - \beta \cdot u - T(u,v), [\alpha,\beta]_{\mathfrak{g}} - R(u,v)),$$

• A bundle map $\rho : A \rightarrow TX$:

$$\rho(u,\alpha) = F(u) + \psi(\alpha), \quad (u,\alpha) \in \mathbb{R}^n \oplus \mathfrak{g}.$$

- A solution (P, θ, ω) is a *G*-principal bundle together with *G*-equivariant algebroid map:

$$\begin{array}{c} TP \xrightarrow{H} A \\ \downarrow \\ P \xrightarrow{h} X \end{array}$$

Definition

A Lie algebroid of this form is called a G-structure Lie algebroid with connection.

An example: Extremal Kähler surfaces

Definition

A Kähler surface (M^2, g, σ, J) is called extremal if the Hamiltonian vector field X_K associated with the Gaussian curvature K is an infinitesimal isometry.

An example: Extremal Kähler surfaces

Definition

A Kähler surface (M^2, g, σ, J) is called extremal if the Hamiltonian vector field X_K associated with the Gaussian curvature K is an infinitesimal isometry.

Classification Problem: Find all extremal Kähler surfaces up to isomorphism.

An example: Extremal Kähler surfaces

Definition

A Kähler surface (M^2, g, σ, J) is called extremal if the Hamiltonian vector field X_K associated with the Gaussian curvature K is an infinitesimal isometry.

Classification Problem: Find all extremal Kähler surfaces up to isomorphism.

Unitary frame bundle:

$$F_{U(1)}(M) := \left\{ u : \mathbb{C} \to (T_x M, J_x) \mid \text{complex linear isomorphism} \right\}$$

Tautological form: $\theta \in \Omega^1(F_{U(1)}(M), \mathbb{C})$ Levi-Civita connection: $\omega \in \Omega^1(F_{U(1)}(M), \mathfrak{u}(1))$ Structure Equations: Identifying $\mathfrak{u}(1) \simeq i\mathbb{R}$

$$\begin{cases} d\theta = -\omega \wedge \theta \\ d\omega = \frac{K}{2} \theta \wedge \overline{\theta} \end{cases}$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

Pullback of the symplectic form σ under $\pi : F_{U(1)}(M) \to M$:

$$\pi^*\sigma = -\frac{i}{2}\,\theta\wedge\bar{\theta}.$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

Pullback of the symplectic form σ under $\pi : F_{U(1)}(M) \to M$:

$$\pi^*\sigma = -\frac{i}{2}\,\theta\wedge\bar{\theta}.$$

– If $\widetilde{X}_{\mathcal{K}}$ denotes the lift of $X_{\mathcal{K}}$:

$$\frac{i}{2}\imath_{\widetilde{X}_{K}}(\theta \wedge \overline{\theta}) = -\imath_{\widetilde{X}_{K}}\pi^{*}\sigma = -dK \implies \begin{cases} dK = -(\overline{T}\theta + T\overline{\theta}), \text{ with} \\ T: F_{U(1)}(M) \to \mathbb{C}, \ T:=\frac{i}{2}\theta(\widetilde{X}_{K}) \end{cases}$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

Pullback of the symplectic form σ under $\pi : F_{U(1)}(M) \to M$:

$$\pi^*\sigma = -\frac{i}{2}\,\theta\wedge\bar{\theta}.$$

– If $\widetilde{X}_{\mathcal{K}}$ denotes the lift of $X_{\mathcal{K}}$:

$$\frac{i}{2}\imath_{\widetilde{X}_{K}}(\theta \wedge \overline{\theta}) = -\imath_{\widetilde{X}_{K}}\pi^{*}\sigma = -dK \implies \begin{cases} dK = -(\overline{T}\theta + T\overline{\theta}), \text{ with} \\ T: F_{U(1)}(M) \to \mathbb{C}, \ T:=\frac{i}{2}\theta(\widetilde{X}_{K}) \end{cases}$$

– Since $\mathcal{L}_{\widetilde{X}_{\mathcal{K}}} \theta = 0$, 1st structure equation yields:

$$\mathrm{d}T = \frac{i}{2} \,\mathrm{d}\,\imath_{\widetilde{X}_{\mathcal{K}}} \theta = -\frac{i}{2}\,\imath_{\widetilde{X}_{\mathcal{K}}} \mathrm{d}\theta = \frac{i}{2}\,\imath_{\widetilde{X}_{\mathcal{K}}}(\omega \wedge \theta) \implies \begin{cases} \mathrm{d}T = U\theta - T\omega, \text{ with} \\ U : \mathrm{F}_{U(1)}(M) \to \mathbb{R}, \ U := \frac{i}{2}\omega(\widetilde{X}_{\mathcal{K}}) \end{cases}$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

Pullback of the symplectic form σ under $\pi : F_{U(1)}(M) \to M$:

$$\pi^*\sigma = -\frac{i}{2}\,\theta\wedge\bar{\theta}.$$

– If $\widetilde{X}_{\mathcal{K}}$ denotes the lift of $X_{\mathcal{K}}$:

$$\frac{i}{2} \imath_{\widetilde{X}_{K}}(\theta \wedge \overline{\theta}) = -\imath_{\widetilde{X}_{K}} \pi^{*} \sigma = -\mathsf{d}K \quad \Longrightarrow \quad \left\{ \begin{array}{c} \mathsf{d}K = -(\overline{T}\theta + T\overline{\theta}), \text{ with} \\ T : \mathsf{F}_{U(1)}(M) \to \mathbb{C}, \ T := \frac{i}{2}\theta(\widetilde{X}_{K}) \end{array} \right.$$

– Since $\mathcal{L}_{\widetilde{X}_{\mathcal{K}}} \theta = 0$, 1st structure equation yields:

$$\mathrm{d}T = \frac{i}{2} \,\mathrm{d}\,\imath_{\widetilde{X}_{\mathcal{K}}} \theta = -\frac{i}{2}\,\imath_{\widetilde{X}_{\mathcal{K}}} \mathrm{d}\theta = \frac{i}{2}\,\imath_{\widetilde{X}_{\mathcal{K}}}(\omega \wedge \theta) \implies \begin{cases} \mathrm{d}T = U\theta - T\omega, \text{ with} \\ U : \mathrm{F}_{U(1)}(M) \to \mathbb{R}, \ U := \frac{i}{2}\omega(\widetilde{X}_{\mathcal{K}}) \end{cases}$$

– Since $X_{\mathcal{K}}$ is infinitesimal isometry, $\mathcal{L}_{\widetilde{X}_{\mathcal{K}}}\omega = 0$, 2nd structure equation yields:

$$\mathrm{d}U = \frac{i}{2} \,\mathrm{d}\,\imath_{\widetilde{X}_{K}} \,\omega = -\frac{i}{2}\,\imath_{\widetilde{X}_{K}} \,\mathrm{d}\omega = -\frac{i}{4}K\,\imath_{\widetilde{X}_{K}}(\theta \wedge \overline{\theta}) \quad \Longrightarrow \quad \mathrm{d}U = -\frac{K}{2}(\overline{T}\theta + T\overline{\theta})$$

Conclusion: An extremal Kähler surface amounts to:

- U(1)-structure $P \to M$ w/ tautological form $\theta \in \Omega^1(P, \mathbb{C})$, connection form $\omega \in \Omega^1(P, i\mathbb{R})$, and
- a map $(K, T, U) : P \to \mathbb{R} \times \mathbb{C} \times \mathbb{R}$

satisfying:

$$\begin{aligned} \mathrm{d}\theta &= -\omega \wedge \theta \\ \mathrm{d}\omega &= \frac{\kappa}{2} \, \theta \wedge \bar{\theta} \\ \mathrm{d}K &= -(\bar{T}\theta + T\bar{\theta}) \\ \mathrm{d}T &= U\theta - T\omega \\ \mathrm{d}U &= -\frac{\kappa}{2} (\bar{T}\theta + T\bar{\theta}) \end{aligned} (\star)$$

The quotient M = P/U(1) is the desired extremal Kähler surface.

Conclusion: An extremal Kähler surface amounts to:

- U(1)-structure $P \to M$ w/ tautological form $\theta \in \Omega^1(P, \mathbb{C})$, connection form $\omega \in \Omega^1(P, i\mathbb{R})$, and
- a map $(K, T, U) : P \to \mathbb{R} \times \mathbb{C} \times \mathbb{R}$

satisfying:

$$\begin{aligned} \mathrm{d}\theta &= -\omega \wedge \theta \\ \mathrm{d}\omega &= \frac{\kappa}{2} \, \theta \wedge \bar{\theta} \\ \mathrm{d}K &= -(\bar{T}\theta + T\bar{\theta}) \\ \mathrm{d}T &= U\theta - T\omega \\ \mathrm{d}U &= -\frac{\kappa}{2} (\bar{T}\theta + T\bar{\theta}) \end{aligned} (*)$$

The quotient M = P/U(1) is the desired extremal Kähler surface.

The differential equations (*) define a Lie algebroid!

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

The differential equations

$$\begin{aligned} \mathrm{d}\theta &= -\omega \wedge \theta \\ \mathrm{d}\omega &= \frac{K}{2} \, \theta \wedge \bar{\theta} \\ \mathrm{d}K &= -(\bar{T}\theta + T\bar{\theta}) \\ \mathrm{d}T &= U\theta - T\omega \\ \mathrm{d}U &= -\frac{K}{2}(\bar{T}\theta + T\bar{\theta}) \end{aligned}$$

define a Lie algebroid!

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

The differential equations

$$\begin{aligned} \mathrm{d}\theta &= -\omega \wedge \theta \\ \mathrm{d}\omega &= \frac{K}{2} \theta \wedge \bar{\theta} \\ \mathrm{d}K &= -(\bar{T}\theta + T\bar{\theta}) \\ \mathrm{d}T &= U\theta - T\omega \\ \mathrm{d}U &= -\frac{K}{2}(\bar{T}\theta + T\bar{\theta}) \end{aligned}$$

define a Lie algebroid!

$$A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$$

(with global coordinates (K, T, U))

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

The differential equations

$$d\theta = -\omega \wedge \theta$$

$$d\omega = \frac{K}{2} \theta \wedge \bar{\theta}$$

$$dK = -(\bar{T}\theta + T\bar{\theta})$$

$$dT = U\theta - T\omega$$

$$dU = -\frac{K}{2}(\bar{T}\theta + T\bar{\theta})$$

define a Lie algebroid!

$$A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$$

(with global coordinates (K, T, U))

Differential: d_A is determined by eqs on 0-forms and 1-forms and extends to any k-form by $d_A(\alpha \wedge \beta) = d_A \alpha \wedge \beta + (-1)^{|\alpha|} \alpha \wedge d_A \beta$.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

The differential equations

$$\begin{aligned} \mathrm{d}\theta &= -\omega \wedge \theta \\ \mathrm{d}\omega &= \frac{K}{2} \theta \wedge \bar{\theta} \\ \mathrm{d}K &= -(\bar{T}\theta + T\bar{\theta}) \\ \mathrm{d}T &= U\theta - T\omega \\ \mathrm{d}U &= -\frac{K}{2}(\bar{T}\theta + T\bar{\theta}) \end{aligned}$$

define a Lie algebroid!

$$A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$$

(with global coordinates (K, T, U))

Alternatively:

Lie bracket:
$$[(z, \alpha), (w, \beta)]|_{(K, T, U)} := (\alpha w - \beta z, -\frac{K}{2}(z\bar{w} - \bar{z}w))$$

Anchor: $\rho(z, \alpha)|_{(K, T, U)} := \left(-T\bar{z} - \bar{T}z, Uz - \alpha T, -\frac{K}{2}T\bar{z} - \frac{K}{2}\bar{T}z\right)$
Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
				0000		

Algebroid of extremal Kähler surfaces

The differential equations

$$\begin{aligned} \mathrm{d}\theta &= -\omega \wedge \theta \\ \mathrm{d}\omega &= \frac{K}{2} \theta \wedge \bar{\theta} \\ \mathrm{d}K &= -(\bar{T}\theta + T\bar{\theta}) \\ \mathrm{d}T &= U\theta - T\omega \\ \mathrm{d}U &= -\frac{K}{2}(\bar{T}\theta + T\bar{\theta}) \end{aligned}$$

define a Lie algebroid!

$$A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R}$$

(with global coordinates (K, T, U))

Alternatively:

Lie bracket:
$$[(z, \alpha), (w, \beta)]|_{(K, T, U)} := (\alpha w - \beta z, -\frac{K}{2}(z\overline{w} - \overline{z}w))$$

Anchor: $\rho(z, \alpha)|_{(K, T, U)} := \left(-T\overline{z} - \overline{T}z, Uz - \alpha T, -\frac{K}{2}T\overline{z} - \frac{K}{2}\overline{T}z\right)$

It comes with a right U(1)-action:

$$(K, T, U)g = (K, g^{-1}T, U), \qquad (z, \alpha)g = (g^{-1}z, \alpha).$$

In order to solve the realization problem, we need the global objects integrating *G*-structure Lie algebroids with connection.

In order to solve the realization problem, we need the global objects integrating *G*-structure Lie algebroids with connection.

Definition

A *G*-principal groupoid is a Lie groupoid $\Gamma \rightrightarrows X$ with a right principal action $\Gamma \times G \rightarrow \Gamma$ satisfying:

$$(\gamma_1 \cdot \gamma_2) g = \gamma_1 \cdot (\gamma_2 g), \quad \forall (\gamma_1, \gamma_2) \in \Gamma^{(2)}, \ g \in G.$$

In order to solve the realization problem, we need the global objects integrating *G*-structure Lie algebroids with connection.

Definition

A *G*-principal groupoid is a Lie groupoid $\Gamma \rightrightarrows X$ with a right principal action $\Gamma \times G \rightarrow \Gamma$ satisfying:

$$(\gamma_1 \cdot \gamma_2) g = \gamma_1 \cdot (\gamma_2 g), \quad \forall (\gamma_1, \gamma_2) \in \Gamma^{(2)}, \ g \in G.$$

A morphism of *G*-principal groupoids is a *G*-equivariant groupoid morphism $\Phi : \Gamma_1 \to \Gamma_2$ between *G*-principal groupoids.

In order to solve the realization problem, we need the global objects integrating *G*-structure Lie algebroids with connection.

Definition

A *G*-principal groupoid is a Lie groupoid $\Gamma \rightrightarrows X$ with a right principal action $\Gamma \times G \rightarrow \Gamma$ satisfying:

$$(\gamma_1 \cdot \gamma_2) g = \gamma_1 \cdot (\gamma_2 g), \quad \forall (\gamma_1, \gamma_2) \in \Gamma^{(2)}, \ g \in G.$$

A morphism of *G*-principal groupoids is a *G*-equivariant groupoid morphism $\Phi : \Gamma_1 \to \Gamma_2$ between *G*-principal groupoids.

Remark. Each $t^{-1}(x)$ is a *G*-principal bundle over $M = t^{-1}(x)/G$. Hence, a *G*-principal groupoid is a *family* of *G*-principal bundles parameterized by *X*.

 $G \subset \operatorname{GL}(n, \mathbb{R})$ – closed subgroup

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
					00000	

 $G \subset \operatorname{GL}(n, \mathbb{R})$ – closed subgroup

Definition

A *G*-structure groupoid consists of a *G*-principal groupoid $\Gamma \rightrightarrows X$ with left-invariant 1-form $\Theta \in \Omega^1_1(\Gamma, \mathbb{R}^n)$ whose restriction to each fiber $t^{-1}(x)$ is a tautological form.

 $G \subset \operatorname{GL}(n, \mathbb{R})$ – closed subgroup

Definition

A *G*-structure groupoid consists of a *G*-principal groupoid $\Gamma \rightrightarrows X$ with left-invariant 1-form $\Theta \in \Omega^1_L(\Gamma, \mathbb{R}^n)$ whose restriction to each fiber $t^{-1}(x)$ is a tautological form. A morphism of *G*-structure groupoids $\Phi : (\Gamma_1, \Theta_1) \rightarrow (\Gamma_2, \Theta_2)$ is a morphism of *G*-principal groupoids such that $\Phi^*\Theta_2 = \Theta_1$.

 $G \subset \mathsf{GL}(n,\mathbb{R})$ – closed subgroup

Definition

A *G*-structure groupoid consists of a *G*-principal groupoid $\Gamma \rightrightarrows X$ with left-invariant 1-form $\Theta \in \Omega^1_L(\Gamma, \mathbb{R}^n)$ whose restriction to each fiber $t^{-1}(x)$ is a tautological form. A morphism of *G*-structure groupoids $\Phi : (\Gamma_1, \Theta_1) \rightarrow (\Gamma_2, \Theta_2)$ is a morphism of *G*-principal groupoids such that $\Phi^*\Theta_2 = \Theta_1$.

Remark. Each t-fiber $t^{-1}(x)$ is a *G*-structure over $M = t^{-1}(x)/G$. Hence, a *G*-structure groupoid is a *family* of *G*-structures parameterized by *X*.

Definition

A connection 1-form on a *G*-principal groupoid $\Gamma \rightrightarrows X$ is a left-invariant 1-form $\Omega \in \Omega^1_1(\Gamma, \mathfrak{g})$ whose restriction to each fiber $\mathbf{t}^{-1}(x)$ is a connection form.

Definition

A connection 1-form on a *G*-principal groupoid $\Gamma \rightrightarrows X$ is a left-invariant 1-form $\Omega \in \Omega_l^1(\Gamma, \mathfrak{g})$ whose restriction to each fiber $\mathbf{t}^{-1}(x)$ is a connection form. A morphism of *G*-principal groupoids with connection is a *G*-principal groupoid morphism $\Phi : \Gamma_1 \rightarrow \Gamma_2$ preserving connection forms: $\Phi^*\Omega_2 = \Omega_1$.

Definition

A connection 1-form on a *G*-principal groupoid $\Gamma \rightrightarrows X$ is a left-invariant 1-form $\Omega \in \Omega_{L}^{1}(\Gamma, \mathfrak{g})$ whose restriction to each fiber $t^{-1}(x)$ is a connection form. A morphism of *G*-principal groupoids with connection is a *G*-principal groupoid morphism $\Phi : \Gamma_{1} \rightarrow \Gamma_{2}$ preserving connection forms: $\Phi^{*}\Omega_{2} = \Omega_{1}$.

Remark. Each fiber $t^{-1}(x)$ is a *G*-principal bundle with connection over $M = t^{-1}(x)/G$. Hence, we have a *family* of *G*-principal bundles with connection parameterized by *X*.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
					00000	

Global Objects

Given a closed subgroup $G \subset GL(n, \mathbb{R})$, the relevant global objects for the equivalence problem are *G*-structure groupoids with connection:

$$\Gamma \rightrightarrows X, \quad \Theta \in \Omega^1_L(\Gamma, \mathbb{R}^n), \quad \Omega \in \Omega^1_L(\Gamma, \mathfrak{g}).$$

They describe a *family* of *G*-structures with connection parameterized by *X*.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
					00000	

Global Objects

Given a closed subgroup $G \subset GL(n, \mathbb{R})$, the relevant global objects for the equivalence problem are *G*-structure groupoids with connection:

$$\Gamma \rightrightarrows X, \quad \Theta \in \Omega^1_L(\Gamma, \mathbb{R}^n), \quad \Omega \in \Omega^1_L(\Gamma, \mathfrak{g}).$$

They describe a *family* of *G*-structures with connection parameterized by *X*.

Theorem

If $(\Gamma \rightrightarrows X, \Theta, \Omega)$ is a G-structure groupoid with connection, then its Lie algebroid $A = Lie(\Gamma) \rightarrow X$ is a G-structure Lie algebroid with connection.

Theorem

Every solution is covered by an open subset of a solution of the form $t^{-1}(x)/G$ for a *G*-integration.

Theorem

Every solution is covered by an open subset of a solution of the form $t^{-1}(x)/G$ for a *G*-integration.

Important addenda:

- It is enough to *G*-integrate the restriction of $A \rightarrow X$ to the orbit containing $x \in X$.
- There is a (computable) obstruction theory for G-integrability.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
						0000

The algebroid $A o X \simeq \mathbb{R}^4$

 $A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R} \simeq \mathbb{R}^4$

(with global coordinates (K, T, U))

$$\begin{aligned} [(\boldsymbol{z},\alpha),(\boldsymbol{w},\beta)]|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})} &:= (\alpha \boldsymbol{w} - \beta \boldsymbol{z}, -\frac{\kappa}{2}(\boldsymbol{z}\boldsymbol{\bar{w}} - \boldsymbol{\bar{z}}\boldsymbol{w}))\\ \rho(\boldsymbol{z},\alpha)|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})} &:= \left(-\boldsymbol{T}\boldsymbol{\bar{z}} - \boldsymbol{\bar{T}}\boldsymbol{z}, \boldsymbol{U}\boldsymbol{z} - \alpha \boldsymbol{T}, -\frac{\kappa}{2}\boldsymbol{T}\boldsymbol{\bar{z}} - \frac{\kappa}{2}\boldsymbol{\bar{T}}\boldsymbol{z}\right), \end{aligned}$$

has orbits:

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
						0000

The algebroid $A o X \simeq \mathbb{R}^4$

 $A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R} \simeq \mathbb{R}^4$

(with global coordinates (K, T, U))

$$\begin{aligned} [(z,\alpha),(\mathbf{w},\beta)]|_{(K,T,U)} &:= (\alpha w - \beta z, -\frac{K}{2}(z\bar{w} - \bar{z}w)) \\ \rho(z,\alpha)|_{(K,T,U)} &:= \left(-T\bar{z} - \bar{T}z, Uz - \alpha T, -\frac{K}{2}T\bar{z} - \frac{K}{2}\bar{T}z\right), \end{aligned}$$

has orbits:

• the points (K, 0, 0, 0), with isotropy $\mathfrak{so}(3, \mathbb{R})$ (if K > 0), $\mathfrak{sl}(2, \mathbb{R})$ (if K < 0) and $\mathfrak{so}(2, \mathbb{R}) \ltimes \mathbb{R}^2$ (if K = 0);

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
						0000

The algebroid $A o X \simeq \mathbb{R}^4$

 $A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R} \simeq \mathbb{R}^4$

(with global coordinates (K, T, U))

$$\begin{aligned} [(\boldsymbol{z},\alpha),(\boldsymbol{w},\beta)]|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})} &:= (\alpha \boldsymbol{w} - \beta \boldsymbol{z}, -\frac{\boldsymbol{K}}{2}(\boldsymbol{z}\bar{\boldsymbol{w}} - \bar{\boldsymbol{z}}\boldsymbol{w}))\\ \rho(\boldsymbol{z},\alpha)|_{(\boldsymbol{K},\boldsymbol{T},\boldsymbol{U})} &:= \left(-T\bar{\boldsymbol{z}} - \bar{\boldsymbol{T}}\boldsymbol{z}, \boldsymbol{U}\boldsymbol{z} - \alpha \boldsymbol{T}, -\frac{\boldsymbol{K}}{2}\boldsymbol{T}\bar{\boldsymbol{z}} - \frac{\boldsymbol{K}}{2}\bar{\boldsymbol{T}}\boldsymbol{z}\right), \end{aligned}$$

has orbits:

- the points (K, 0, 0, 0), with isotropy $\mathfrak{so}(3, \mathbb{R})$ (if K > 0), $\mathfrak{sl}(2, \mathbb{R})$ (if K < 0) and $\mathfrak{so}(2, \mathbb{R}) \ltimes \mathbb{R}^2$ (if K = 0);
- the 2-dimensional submanifolds of \mathbb{R}^4 given by U(1)-rotation of the curves in \mathbb{R}^3 :

$$U = \frac{1}{4}K^2 - c_1, \quad |T|^2 = -\frac{1}{12}K^3 + c_1K + c_2.$$

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
						0000

The algebroid $A o X \simeq \mathbb{R}^4$

 $A = (\mathbb{R} \times \mathbb{C} \times \mathbb{R}) \times (\mathbb{C} \oplus i\mathbb{R}) \longrightarrow X = \mathbb{R} \times \mathbb{C} \times \mathbb{R} \simeq \mathbb{R}^4$

(with global coordinates (K, T, U))

$$[(z,\alpha),(\mathbf{w},\beta)]|_{(K,T,U)} := (\alpha \mathbf{w} - \beta z, -\frac{K}{2}(z\bar{\mathbf{w}} - \bar{z}\mathbf{w}))$$

$$\rho(z,\alpha)|_{(K,T,U)} := \left(-T\bar{z} - \bar{T}z, Uz - \alpha T, -\frac{K}{2}T\bar{z} - \frac{K}{2}\bar{T}z\right),$$

has orbits:

- the points (K, 0, 0, 0), with isotropy $\mathfrak{so}(3, \mathbb{R})$ (if K > 0), $\mathfrak{sl}(2, \mathbb{R})$ (if K < 0) and $\mathfrak{so}(2, \mathbb{R}) \ltimes \mathbb{R}^2$ (if K = 0);
- the 2-dimensional submanifolds of \mathbb{R}^4 given by U(1)-rotation of the curves in \mathbb{R}^3 :

$$U = \frac{1}{4}K^2 - c_1, \quad |T|^2 = -\frac{1}{12}K^3 + c_1K + c_2.$$

The values of c_1 and c_2 (hence $\Delta = \frac{1}{48}(16c_1^3 - 9c_2^2)$) determine if an orbit \mathcal{O} has topology, and hence determines the *G*-integrability of $A|_{\mathcal{O}}$.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
						0000

The 1-connected extremal Kähler surfaces

Conditions	$U(1)$ -frame bundle: $s^{-1}(x)$	Solutions: $s^{-1}(x)/U(1)$	complete solutions
<i>K</i> = 0	$SO(2) \ltimes \mathbb{R}^2$	\mathbb{R}^2	Yes
K = c > 0	S ³	S ²	Yes
K = c < 0	SO(2, 1)		Yes
$\Delta=0, c_1=c_2=0$	$(\mathbb{R}^2 imes \mathbb{R})/\mathbb{Z}$	\mathbb{R}^2	No
$\Delta=0,c_2<0$	$\mathbb{R}^2 \times \mathbb{S}^1$	\mathbb{R}^2	No
$\Delta=0,c_2>0$	$(\mathbb{R}^2 imes\mathbb{R})/\mathbb{Z}$ $(\mathbb{R}^2 imes\mathbb{S}^1)$	\mathbb{R}^2	Yes No
$\Delta < 0$	$\mathbb{R}^2 \times \mathbb{S}^1$	\mathbb{R}^2	No
$\Delta > 0$	$\mathbb{R}^2 \times \mathbb{S}^1$	\mathbb{R}^2	No
$(\text{if } \frac{4c_1 - r_2^2}{r_3^2 - 4c_1} = \frac{p}{q})$	S ³	$\mathbb{CP}^1_{\rho,q}$	Yes

Rui Loja Fernandes The geometry of Cartan's realization problems

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
						0000

Final comments

Other byproducts of the theory:

- Give existence and unique of solutions for any Cartan realization problem.
- Allows to determine which solutions are complete.
- Yields infinitesimal and global symmetries of solutions.
- Describes deformations and moduli space of solutions.

Introduction	G-structures	Algebroids	Realization problem	An example	General Theory	Example: solutions
						0000

Final comments

Other byproducts of the theory:

- Give existence and unique of solutions for any Cartan realization problem.
- Allows to determine which solutions are complete.
- Yields infinitesimal and global symmetries of solutions.
- Describes deformations and moduli space of solutions.

Still many things to be worked out, e.g (in progress):

- Extend theory to *G*-structure of finite type k > 1;
- Extend theory to infinite dimensions (profinite algebroids);
- Work out more examples.

Introduction G-structures Algebroids Realization problem An example Ge

General Theory

Example: solutions

Thank you!

