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Main message

Lie groupoids and Lie algebroids (with extra structure) provide the right language
to solve equivalence problems.

This tutorial talk aims at sketching this program.

Based on joint work with Peter’s grand child Ivan Struchiner (USP):

The Classifying Lie Algebroid of a Geometric Structure I: Classes of Coframes.
Transactions of the AMS 366 (2014), 2419–2462.

The Classifying Lie Algebroid of a Geometric Structure II: G-structures with
connection. São Paulo J. Math. Sci. 15 (2021), 524–570.

The Global Solutions to a Cartan’s Realization Problem arXiv:1907.13614.

Inspired by:

R. Bryant, Bochner-Kähler metrics. J. Amer. Math. Soc. 14 (2001), 623-715.

P. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press,
Cambridge, UK, 1995.
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Overview

Starting from the classical correspondence:

Geometric structures ←→ G-structures(with connection)

The main steps of the program:

Classification problem for
class of geometric structures

←→ G-structure algebroid
(with connection)

Solutions to
classification problem

←→ Integrate G-structure algebroid to
G-structure groupoid (with connection)
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Equivalence of G-structures
Notation:

M – manifold with dim M = n
π : F(M)→ M – frame bundle of M:

π−1(x) = {p : Rn → Tx M : linear isomorphism}

G ⊂ GLn(R) closed Lie group

Definition

A G-structure is a G-invariant submanifold P ⊂ F(M) such that π : P → M is a
principal G-bundle

A diffeomorphism φ : M1 → M2 lifts to an isomorphism: φ∗ : F(M1)→ F(M2).

Definition

Given G-structures P1 ⊂ F(M1) and P2 ⊂ F(M2), a G-equivalence is a diffeomorphism
φ : M1 → M2 such that:

φ∗(P1) = P2.

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Equivalence of G-structures
Notation:

M – manifold with dim M = n
π : F(M)→ M – frame bundle of M:

π−1(x) = {p : Rn → Tx M : linear isomorphism}

G ⊂ GLn(R) closed Lie group

Definition

A G-structure is a G-invariant submanifold P ⊂ F(M) such that π : P → M is a
principal G-bundle

A diffeomorphism φ : M1 → M2 lifts to an isomorphism: φ∗ : F(M1)→ F(M2).

Definition

Given G-structures P1 ⊂ F(M1) and P2 ⊂ F(M2), a G-equivalence is a diffeomorphism
φ : M1 → M2 such that:

φ∗(P1) = P2.

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Equivalence of G-structures
Notation:

M – manifold with dim M = n
π : F(M)→ M – frame bundle of M:

π−1(x) = {p : Rn → Tx M : linear isomorphism}

G ⊂ GLn(R) closed Lie group

Definition

A G-structure is a G-invariant submanifold P ⊂ F(M) such that π : P → M is a
principal G-bundle

A diffeomorphism φ : M1 → M2 lifts to an isomorphism: φ∗ : F(M1)→ F(M2).

Definition

Given G-structures P1 ⊂ F(M1) and P2 ⊂ F(M2), a G-equivalence is a diffeomorphism
φ : M1 → M2 such that:

φ∗(P1) = P2.

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Equivalence of G-structures
Notation:

M – manifold with dim M = n
π : F(M)→ M – frame bundle of M:

π−1(x) = {p : Rn → Tx M : linear isomorphism}

G ⊂ GLn(R) closed Lie group

Definition

A G-structure is a G-invariant submanifold P ⊂ F(M) such that π : P → M is a
principal G-bundle

A diffeomorphism φ : M1 → M2 lifts to an isomorphism: φ∗ : F(M1)→ F(M2).

Definition

Given G-structures P1 ⊂ F(M1) and P2 ⊂ F(M2), a G-equivalence is a diffeomorphism
φ : M1 → M2 such that:

φ∗(P1) = P2.

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Tautological form

Given two G-structures Pi → Mi , when is a G-principal bundle isomorphism
P1 → P2 a G-equivalence?

The frame bundle carries a tautological form θ ∈ Ω1(F(M),Rn):

θp(ξ) = p−1(dpπ(ξ)) (p ∈ F(M))

=⇒ tautological form on any G-structure θ ∈ Ω1(P,Rn)

Theorem

A principal bundle isomorphism

P1

��

Φ // P2

��
M1 ϕ

// M2

is an equivalence of G-structures if and only if Φ∗θ2 = θ1.
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Tautological form

When is a G-principal bundle P → M a G-structure?

Given G-structure P ⊂ F(M), the tautological form θ ∈ Ω1(P,Rn) satisfies:

1 Strongly horizontal: θp(v) = 0 iff v = α̃|p , for some α ∈ g

2 G-equivariant: g∗θ = g−1 · θ, for all g ∈ G

3 Pointwise surjective: θp : TpFG(M)→ Rn

Theorem

If π : P → M is a G-principal bundle with G ⊂ GLn(R) and θP ∈ Ω1(P,Rn) satisfies
1-3, then there exists a unique embedding of principal bundles

i : P ↪→ F(M), i∗θ = θP .

A form θP satisfying 1-3 will also be call a tautological form.

Rui Loja Fernandes The geometry of Cartan’s realization problems
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Examples of G-structures

Coframes⇐⇒ {e}-structures;

Riemannian structures⇐⇒ On-structures;

Almost symplectic structures⇐⇒ Spn-structures;

Almost complex structures⇐⇒ GLn(C)-structures;

Almost hermitian structures⇐⇒ Un-structures.

Definition

A G-structure P → M is called integrable if it is locally equivalent to the trivial
G-structure Rn × G ⊂ F(Rn).

Integrable On-structures⇐⇒ flat Riemannian structures;

Integrable Spn-structures⇐⇒ symplectic structures ;

Integrable GLn(C)-structures⇐⇒ complex structures;

Integrable Un-structures⇐⇒ flat Kähler structures.
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Connections on G-structures

Definition

A connection on P → M is a 1-form ω ∈ Ω1(P, g) satisfying:

1 Vertical: ω(α̃) = α, for all α ∈ g;

2 G-equivariant: g∗ω = Adg−1 ◦ ω, for all g ∈ G.

If (P, θ, ω) is a G-structure with connection:

(θ, ω)p : TpP ∼−→ Rn ⊕ g

=⇒ (θ, ω) is a coframe which satisfies the structure equations:{
dθ = T (θ ∧ θ)− ω ∧ θ
dω = R(θ ∧ θ)− ω ∧ ω

where:

- T : P → Hom(∧2Rn,Rn) – torsion
- R : P → Hom(∧2Rn, g) – curvature
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Equivalence of G-structures with connection

(Pi , θi , ωi ) – G-structures with connection

Definition

A (local) equivalence is a (local) G-bundle isomorphism φ : P1 → P2 which preserves
the coframes:

φ∗θ2 = θ1, φ∗ω2 = ω1.

Equivalence problem:
When are two G-structures with connection (locally) equivalent?

Rui Loja Fernandes The geometry of Cartan’s realization problems
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Invariant forms

(P, θ, ω) – G-structure with connection

Definition

A form α ∈ Ωk (P) is called invariant if for every local equivalence φ : P → P:

φ∗α = α.

We denote by Ω•(P, θ, ω) the space of invariant forms.

Basic Remark: Ω•(P, θ, ω) is preserved under exterior differentiation.

α ∈ Ω•(P, θ, ω) =⇒ dα ∈ Ω•(P, θ, ω)

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Invariant forms

(P, θ, ω) – G-structure with connection

Definition

A form α ∈ Ωk (P) is called invariant if for every local equivalence φ : P → P:

φ∗α = α.

We denote by Ω•(P, θ, ω) the space of invariant forms.

Basic Remark: Ω•(P, θ, ω) is preserved under exterior differentiation.

α ∈ Ω•(P, θ, ω) =⇒ dα ∈ Ω•(P, θ, ω)

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Fully regular G-structures
Definition

(P, θ, ω) is called fully regular when the spaces{
dp I : I ∈ Ω0(P, θ, ω)} ⊂ T∗p P

}
,

have constant dimension (independent of p ∈ P).

If (P, θ, ω) is fully regular, ∃ space X(θ,ω) & submersion h : P → X(θ,ω) so that:

Ω0(P, θ, ω) = h∗C∞(X(θ,ω)).

In fact, more is true:

Proposition

For a fully regular G-structure with connection (P, θ, ω):

Ω•(P, θ, ω) ' Ω•(A(θ,ω)) := Γ(∧•A∗(θ,ω)),

where A(θ,ω) = X(θ,ω) × (Rn ⊕ g)→ X(θ,ω).
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Lie algebroids and G-structures

It follows that for a fully regular (P, θ, ω) we have:

A vector bundle A→ X ;

a linear operator dA : Ω•(A)→ Ω•+1(A);

satisfying:

1 d2
A = 0;

2 dA(α ∧ β) = dAα ∧ β + (−1)|α|α ∧ dAβ.

This is what is called a Lie algebroid, though it is more commonly defined as:

Definition

A Lie algebroid is a vector bundle A→ X with:

A Lie bracket [·, ·]A; Γ(A)× Γ(A)→ Γ(A);

A bundle map ρA : A→ TM;

satisfying the Leibniz identity:

[s1, f s2]A = f [s1, s2]A + ρ(s1)(f ) s2.
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Summary

Given (P, θ, ω) a fully regular G-structure with connection, we have a classify-
ing Lie algebroid A(θ,ω) → X(θ,ω) and a classifying bundle map:

TP
H //

��

A(θ,ω)

��
P

h
// X(θ,ω)

such that:
Ω•(P, θ, ω) = H∗Ω•(A(θ,ω)).

Moreover:

(H, h) is a Lie algebroid map: H∗(dAα) = d(H∗α), ∀α ∈ Ω•(A(θ,ω));

TP and A(θ,ω) carry G-actions by Lie algebroid automorphisms for which (H, h)
is G-equivariant;

A(θ,ω) is a transitive Lie algebroid: Im ρ = TX(θ,ω).
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Families of G-structures

In a classification problem one is not given, a priori, one G-structure. Rather,
one has differential equations determining a family of G-structures.

One seeks all G-structures P → M, satisfying structure eqs:

dθ = T (θ ∧ θ)− ω ∧ θ, dω = R(θ ∧ θ)− ω ∧ ω (1)

where possible values of torsion and curvature are constrained:
There is G-equivariant map h : P → X into G-manifold X such that torsion and
curvature factor through X :

R = R(h) T = T (h),

for G-equivariant maps R : X → Hom(∧2Rn, g) and T : X → Hom(∧2Rn,Rn).
Since (θ, ω) is a coframe, h : P → X also satisfies structure equations:

dh = F (h, θ) + ψ(h, ω), (2)

where F : X × Rn → TX is G-equivariant and ψ : X × g→ TX is g-action.
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Cartan’s Realization Problem

One is given Cartan Data:
a closed Lie subgroup G ⊂ GL(n,R);
a G-manifold X with infinitesimal action ψ : X × g→ TX ;
equivariant maps T : X → Hom(∧2Rn,Rn), R : X → Hom(∧2Rn, g) and
F : X × Rn → TX ;

One seek solutions:
an n-dimensional orbifold M;
a G-structure P → M with tautological form θ ∈ Ω1(P,Rn) and connection
1-form ω ∈ Ω1(P, g);
an equivariant map h : P → X ;

satisfying:

dθ = T (h)(θ ∧ θ)− ω ∧ θ,
dω = R(h)(θ ∧ θ)− ω ∧ ω
dh = F (h, θ) + ψ(h, ω).

Again, these can be interpreted in terms of a Lie algebroid!
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Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A = X × (Rn ⊕ g)→ X .

– Cartan data gives:
A linear operator dA : Ω•(A)→ Ω•(A): on 0-forms and 1-forms are given by
equations and extends to any k-form by dA(α ∧ β) = dAα ∧ β + (−1)|α|α ∧ dAβ.

Alternatively:

A bracket on Γ(A):

[(u, α), (v , β)] = (α · v − β · u − T (u, v), [α, β]g − R(u, v)),

A bundle map ρ : A→ TX :

ρ(u, α) = F (u) + ψ(α), (u, α) ∈ Rn ⊕ g.

– A solution (P, θ, ω) is a G-principal bundle together with G-equivariant algebroid map:

TP
H //

��
A

��
P

h
// X
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Cartan’s Realization Problem: algebroid picture
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– Cartan data gives:
A linear operator dA : Ω•(A)→ Ω•(A): on 0-forms and 1-forms are given by
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Alternatively:
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– A solution (P, θ, ω) is a G-principal bundle together with G-equivariant algebroid map:

TP
H //

��
A

��
P

h
// X

Proposition

There exists a solution through every x ∈ X if and only if A→ X is a Lie algebroid.
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Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A = X × (Rn ⊕ g)→ X .

– Cartan data gives:
A linear operator dA : Ω•(A)→ Ω•(A): on 0-forms and 1-forms are given by
equations and extends to any k-form by dA(α ∧ β) = dAα ∧ β + (−1)|α|α ∧ dAβ.

Alternatively:

A bracket on Γ(A):

[(u, α), (v , β)] = (α · v − β · u − T (u, v), [α, β]g − R(u, v)),

A bundle map ρ : A→ TX :

ρ(u, α) = F (u) + ψ(α), (u, α) ∈ Rn ⊕ g.

– A solution (P, θ, ω) is a G-principal bundle together with G-equivariant algebroid map:

TP
H //

��
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��
P
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Definition

A Lie algebroid of this form is called a G-structure Lie algebroid with connection.
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An example: Extremal Kähler surfaces

Definition

A Kähler surface (M2, g, σ, J) is called extremal if the Hamiltonian vector field XK
associated with the Gaussian curvature K is an infinitesimal isometry.

Classification Problem: Find all extremal Kähler surfaces up to isomorphism.

Unitary frame bundle:

FU(1)(M) :=
{

u : C→ (Tx M, Jx ) | complex linear isomorphism
}

Tautological form: θ ∈ Ω1(FU(1)(M),C)

Levi-Civita connection: ω ∈ Ω1(FU(1)(M), u(1))

Structure Equations: Identifying u(1) ' iR{
dθ = −ω ∧ θ
dω = K

2 θ ∧ θ̄
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Differential analysis
Pullback of the symplectic form σ under π : FU(1)(M)→ M:

π∗σ = − i
2 θ ∧ θ̄.

– If X̃K denotes the lift of XK :

i
2 ıX̃K

(θ ∧ θ̄) = −ıX̃K
π∗σ = −dK =⇒

{
dK = −(T̄θ + T θ̄), with
T : FU(1)(M)→ C, T := i

2 θ(X̃K )

– Since LX̃K
θ = 0, 1st structure equation yields:

dT = i
2 d ıX̃K

θ = − i
2 ıX̃K

dθ = i
2 ıX̃K

(ω∧θ) =⇒
{

dT = Uθ − Tω, with
U : FU(1)(M)→ R, U := i

2ω(X̃K )

– Since XK is infinitesimal isometry, LX̃K
ω = 0, 2nd structure equation yields:

dU = i
2 d ıX̃K

ω = − i
2 ıX̃K

dω = − i
4 K ıX̃K

(θ ∧ θ̄) =⇒ dU = −K
2 (T̄θ + T θ̄)
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π∗σ = − i
2 θ ∧ θ̄.

– If X̃K denotes the lift of XK :

i
2 ıX̃K

(θ ∧ θ̄) = −ıX̃K
π∗σ = −dK =⇒

{
dK = −(T̄θ + T θ̄), with
T : FU(1)(M)→ C, T := i

2 θ(X̃K )

– Since LX̃K
θ = 0, 1st structure equation yields:

dT = i
2 d ıX̃K

θ = − i
2 ıX̃K

dθ = i
2 ıX̃K

(ω∧θ) =⇒
{

dT = Uθ − Tω, with
U : FU(1)(M)→ R, U := i

2ω(X̃K )

– Since XK is infinitesimal isometry, LX̃K
ω = 0, 2nd structure equation yields:

dU = i
2 d ıX̃K

ω = − i
2 ıX̃K

dω = − i
4 K ıX̃K

(θ ∧ θ̄) =⇒ dU = −K
2 (T̄θ + T θ̄)
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Algebroid of extremal Kähler surfaces

Conclusion: An extremal Kähler surface amounts to:

U(1)-structure P → M w/ tautological form θ ∈ Ω1(P,C), connection form
ω ∈ Ω1(P, iR), and

a map (K ,T ,U) : P → R× C× R
satisfying: 

dθ = −ω ∧ θ
dω = K

2 θ ∧ θ̄
dK = −(T̄θ + T θ̄)
dT = Uθ − Tω
dU = −K

2 (T̄θ + T θ̄)

(?)

The quotient M = P/U(1) is the desired extremal Kähler surface.

The differential equations (?) define a Lie algebroid!

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Algebroid of extremal Kähler surfaces

Conclusion: An extremal Kähler surface amounts to:

U(1)-structure P → M w/ tautological form θ ∈ Ω1(P,C), connection form
ω ∈ Ω1(P, iR), and

a map (K ,T ,U) : P → R× C× R
satisfying: 

dθ = −ω ∧ θ
dω = K

2 θ ∧ θ̄
dK = −(T̄θ + T θ̄)
dT = Uθ − Tω
dU = −K

2 (T̄θ + T θ̄)

(?)

The quotient M = P/U(1) is the desired extremal Kähler surface.

The differential equations (?) define a Lie algebroid!

Rui Loja Fernandes The geometry of Cartan’s realization problems



Introduction G-structures Algebroids Realization problem An example General Theory Example: solutions

Algebroid of extremal Kähler surfaces
The differential equations 

dθ = −ω ∧ θ
dω = K

2 θ ∧ θ̄
dK = −(T̄θ + T θ̄)
dT = Uθ − Tω
dU = −K

2 (T̄θ + T θ̄)

define a Lie algebroid!

A = (R× C× R)× (C⊕ iR) // X = R× C× R

(with global coordinates (K ,T ,U))

Differential: dA is determined by eqs on 0-forms and 1-forms and extends to any
k-form by dA(α ∧ β) = dAα ∧ β + (−1)|α|α ∧ dAβ.

Alternatively:

Lie bracket: [(z, α), (w , β)]|(K ,T ,U) := (αw − βz,−K
2 (zw̄ − z̄w))

Anchor: ρ(z, α)|(K ,T ,U) :=
(
−T z̄ − T̄ z,Uz − αT ,−K

2 T z̄ − K
2 T̄ z

)
It comes with a right U(1)-action:

(K ,T ,U)g = (K , g−1T ,U), (z, α)g = (g−1z, α).
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G-principal groupoids

In order to solve the realization problem, we need the global objects integrating
G-structure Lie algebroids with connection.

Definition

A G-principal groupoid is a Lie groupoid Γ ⇒ X with a right principal action Γ× G→ Γ
satisfying:

(γ1 · γ2) g = γ1 · (γ2 g), ∀(γ1, γ2) ∈ Γ(2), g ∈ G.

A morphism of G-principal groupoids is a G-equivariant groupoid morphism
Φ : Γ1 → Γ2 between G-principal groupoids.

Remark. Each t−1(x) is a G-principal bundle over M = t−1(x)/G. Hence, a
G-principal groupoid is a family of G-principal bundles parameterized by X . .
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G-structure groupoids

G ⊂ GL(n,R) – closed subgroup

Definition

A G-structure groupoid consists of a G-principal groupoid Γ ⇒ X with left-invariant
1-form Θ ∈ Ω1

L(Γ,Rn) whose restriction to each fiber t−1(x) is a tautological form.
A morphism of G-structure groupoids Φ : (Γ1,Θ1)→ (Γ2,Θ2) is a morphism of
G-principal groupoids such that Φ∗Θ2 = Θ1.

Remark. Each t-fiber t−1(x) is a G-structure over M = t−1(x)/G. Hence, a

G-structure groupoid is a family of G-structures parameterized by X .
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Connections on G-principal groupoids

Definition

A connection 1-form on a G-principal groupoid Γ ⇒ X is a left-invariant 1-form
Ω ∈ Ω1

L(Γ, g) whose restriction to each fiber t−1(x) is a connection form.
A morphism of G-principal groupoids with connection is a G-principal groupoid
morphism Φ : Γ1 → Γ2 preserving connection forms: Φ∗Ω2 = Ω1.

Remark. Each fiber t−1(x) is a G-principal bundle with connection over

M = t−1(x)/G. . Hence, we have a family of G-principal bundles with connection

parameterized by X .
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Global Objects

Given a closed subgroup G ⊂ GL(n,R), the relevant global objects for the
equivalence problem are G-structure groupoids with connection:

Γ ⇒ X , Θ ∈ Ω1
L(Γ,Rn), Ω ∈ Ω1

L(Γ, g).

They describe a family of G-structures with connection parameterized by X .

Theorem

If (Γ ⇒ X ,Θ,Ω) is a G-structure groupoid with connection, then its Lie algebroid
A = Lie(Γ)→ X is a G-structure Lie algebroid with connection.
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Solving Cartan realization problem

Classification problem for
geometric structures

differential analysis
=⇒ G-structure algebroid

with connection

G-structure algebroid
with connection

G-integration
=⇒ G-structure groupoid

with connection

G-structure groupoid
with connection

=⇒ Solutions: t−1(x)/G
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Solving Cartan realization problem

Classification problem for
geometric structures

differential analysis
=⇒ G-structure algebroid

with connection

G-structure algebroid
with connection

G-integration
=⇒ G-structure groupoid

with connection

G-structure groupoid
with connection

=⇒ Solutions: t−1(x)/G

Theorem

Every solution is covered by an open subset of a solution of the form t−1(x)/G for a
G-integration.
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Solving Cartan realization problem

Classification problem for
geometric structures

differential analysis
=⇒ G-structure algebroid

with connection

G-structure algebroid
with connection

G-integration
=⇒ G-structure groupoid

with connection

G-structure groupoid
with connection

=⇒ Solutions: t−1(x)/G

Theorem

Every solution is covered by an open subset of a solution of the form t−1(x)/G for a
G-integration.

Important addenda:
It is enough to G-integrate the restriction of A→ X to the orbit containing x ∈ X .

There is a (computable) obstruction theory for G-integrability.
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Finding the extremal Kähler surfaces
The algebroid A→ X ' R4

A = (R× C× R)× (C⊕ iR) // X = R× C× R ' R4

(with global coordinates (K ,T ,U))

[(z, α), (w , β)]|(K ,T ,U) := (αw − βz,−K
2 (zw̄ − z̄w))

ρ(z, α)|(K ,T ,U) :=
(
−T z̄ − T̄ z,Uz − αT ,−K

2 T z̄ − K
2 T̄ z

)
,

has orbits:

the points (K , 0, 0, 0), with isotropy so(3,R) (if K > 0), sl(2,R) (if K < 0) and
so(2,R) n R2 (if K = 0);
the 2-dimensional submanifolds of R4 given by U(1)-rotation of the curves in R3:

U = 1
4 K 2 − c1, |T |2 = − 1

12 K 3 + c1K + c2.

The values of c1 and c2 (hence ∆ = 1
48 (16c3

1 − 9c2
2)) determine if an orbit O has

topology, and hence determines the G-integrability of A|O .
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U = 1
4 K 2 − c1, |T |2 = − 1

12 K 3 + c1K + c2.

The values of c1 and c2 (hence ∆ = 1
48 (16c3

1 − 9c2
2)) determine if an orbit O has

topology, and hence determines the G-integrability of A|O .
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Finding the extremal Kähler surfaces
The algebroid A→ X ' R4
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The 1-connected extremal Kähler surfaces

Conditions U(1)-frame bundle: s−1(x) Solutions: s−1(x)/U(1) complete solutions

K = 0 SO(2) n R2 R2 Yes

K = c > 0 S3 S2 Yes

K = c < 0 SO(2, 1) H2 Yes

∆ = 0, c1 = c2 = 0 (R2 × R)/Z R2 No

∆ = 0, c2 < 0 R2 × S1 R2 No

∆ = 0, c2 > 0 (R2 × R)/Z R2 Yes

(R2 × S1) No

∆ < 0 R2 × S1 R2 No

∆ > 0 R2 × S1 R2 No

(if
4c1−r2

2
r2
3 −4c1

= p
q ) S3 CP1

p,q Yes
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Final comments

Other byproducts of the theory:

Give existence and unique of solutions for any Cartan realization problem.

Allows to determine which solutions are complete.

Yields infinitesimal and global symmetries of solutions.

Describes deformations and moduli space of solutions.

Still many things to be worked out, e.g (in progress):

Extend theory to G-structure of finite type k > 1;

Extend theory to infinite dimensions (profinite algebroids);

Work out more examples.
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Thank you!
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