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Some words from our guru:

Chapter 8

Equivalence of Coframes

By definition, a coframe on a manifold is a “complete” collection of
one-forms in the sense that, at each point, it provides a basis for the
cotangent space. Two coframes are said to be equivalent if they are
mapped to each other by a diffeomorphism. The equivalence problem
for coframes is, in fact, the most important of the equivalence problems
that we are to treat, because it ultimately includes all the others as
special cases. Indeed, the remarkable and powerful Cartan equivalence
method, [39], (78], [230], provides an explicit, practical algorithm for
reducing most other equivalence problems to an equivalence problem for
a suitable coframe. (The exceptions are those problems admitting an
infinite dimensional symmetry group, which will be handled by similar,
but more sophisticated methods to be discussed later on.) Therefore, it
is crucial that we Jearn how to deal properly with this apparently special,
but, in reality, quite general equivalence problem. In this chapter, we
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Main message

m Lie groupoids and Lie algebroids (with extra structure) provide the right language
to solve equivalence problems.
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Main message

m Lie groupoids and Lie algebroids (with extra structure) provide the right language
to solve equivalence problems.

This tutorial talk aims at sketching this program.
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Main message

m Lie groupoids and Lie algebroids (with extra structure) provide the right language
to solve equivalence problems.

This tutorial talk aims at sketching this program.

Based on joint work with Peter’s grand child Ivan Struchiner (USP):

m The Classifying Lie Algebroid of a Geometric Structure I: Classes of Coframes.
Transactions of the AMS 366 (2014), 2419-2462.

m The Classifying Lie Algebroid of a Geometric Structure II: G-structures with
connection. Sdo Paulo J. Math. Sci. 15 (2021), 524-570.

m The Global Solutions to a Cartan’s Realization Problem arXiv:1907.13614.

Inspired by:
m R. Bryant, Bochner-Kéhler metrics. J. Amer. Math. Soc. 14 (2001), 623-715.
m P. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press,
Cambridge, UK, 1995.
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Overview
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Geometric structures <—  G-structures(with connection)

The main steps of the program:
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Overview

Starting from the classical correspondence:
Geometric structures <—  G-structures(with connection)

The main steps of the program:

Classification problem for .,  G-structure algebroid

class of geometric structures (with connection)
Solutions to PEEEN Integrate G-structure algebroid to
classification problem G-structure groupoid (with connection)
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Equivalence of G-structures

Notation:
m M — manifold with dim M = n
m 7 : F(M) — M —frame bundle of M:

7 1 (x) = {p:R" = T¢M : linear isomorphism}

B G C GLp(R) closed Lie group
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Equivalence of G-structures

Notation:
m M — manifold with dim M = n
m 7 : F(M) — M —frame bundle of M:

7 1 (x) = {p:R" = T¢M : linear isomorphism}
B G C GLp(R) closed Lie group

A G-structure is a G-invariant submanifold P C F(M) such that = : P — Mis a
principal G-bundle
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Equivalence of G-structures

Notation:
m M — manifold with dim M = n
m 7 : F(M) — M —frame bundle of M:

7 1 (x) = {p:R" = T¢M : linear isomorphism}
B G C GLp(R) closed Lie group
Definition

A G-structure is a G-invariant submanifold P C F(M) such that = : P — Mis a
principal G-bundle

A diffeomorphism ¢ : My — M lifts to an isomorphism: ¢, : F(M;) — F(M>).
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Equivalence of G-structures

Notation:
m M — manifold with dim M = n
m 7 : F(M) — M —frame bundle of M:

7 1 (x) = {p:R" = T¢M : linear isomorphism}
B G C GLp(R) closed Lie group

Definition

A G-structure is a G-invariant submanifold P C F(M) such that = : P — Mis a
principal G-bundle

A diffeomorphism ¢ : My — M lifts to an isomorphism: ¢, : F(M;) — F(M>).

Definition
Given G-structures Py C F(M;) and P, C F(M»), a G-equivalence is a diffeomorphism

¢ : My — Ms such that:
#+(P1) = Pa.
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Tautological form

Given two G-structures P; — M;, when is a G-principal bundle isomorphism
P; — P> a G-equivalence?
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Tautological form

Given two G-structures P; — M;, when is a G-principal bundle isomorphism
P; — P> a G-equivalence?

The frame bundle carries a tautological form 6 € Q' (F(M), R"):

0p(€) = P~ (dpm(€)) (P € F(M))

ja Fernandes The geometry of Cartan’s realization problems



G-structures
[o] lelelele)

Tautological form

Given two G-structures P; — M;, when is a G-principal bundle isomorphism
P; — P> a G-equivalence?

The frame bundle carries a tautological form 6 € Q' (F(M), R"):

0p(&) = p~ ' (dpm(€)) (P € F(M))
— tautological form on any G-structure 8 € Q'(P,R")
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Tautological form

Given two G-structures P; — M;, when is a G-principal bundle isomorphism
P; — P> a G-equivalence?

The frame bundle carries a tautological form 6 € Q' (F(M), R"):

0p(&) = p~ ' (dpm(€)) (P € F(M))
— tautological form on any G-structure 8 € Q'(P,R")

Theorem
A principal bundle isomorphism

P1 $P2

oo

M1 ?Mg

is an equivalence of G-structures if and only if ®*6, = 6.
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Tautological form

[ When is a G-principal bundle P — M a G-structure? ]
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Tautological form

[ When is a G-principal bundle P — M a G-structure? ]

Given G-structure P C F(M), the tautological form 6 € Q'(P, R") satisfies:
El strongly horizontal: 6p(v) = 0 iff v = @lp, for some o € g
B G-equivariant: g*6 = g~ -6, forallg € G
El Pointwise surjective: 6 : ToFg(M) — R”

ja Fernandes The geometry of Cartan’s realization problems
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Tautological form

[ When is a G-principal bundle P — M a G-structure? ]

Given G-structure P C F(M), the tautological form 6 € Q'(P, R") satisfies:
El strongly horizontal: 6p(v) = 0 iff v = @lp, for some o € g
B G-equivariant: g*6 = g~ -6, forallg € G
El Pointwise surjective: 6 : ToFg(M) — R”

If = : P — M is a G-principal bundle with G C GLn(R) and 8p € Q'(P,R") satisfies
1-3, then there exists a unique embedding of principal bundles

itP<FM), i*0=0p.

A form 6p satisfying 1-3 will also be call a tautological form.

ja Fernandes
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Examples of G-structures

Coframes <= {e}-structures;

Riemannian structures <= Op-structures;

Almost symplectic structures <= Sp,-structures;
Almost complex structures <= GLj(C)-structures;
Almost hermitian structures <= Up-structures.
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Examples of G-structures

Coframes <= {e}-structures;

Riemannian structures <= Op-structures;

Almost symplectic structures <= Sp,-structures;
Almost complex structures <= GLj(C)-structures;
Almost hermitian structures <= Up-structures.

A G-structure P — M is called integrable if it is locally equivalent to the trivial
G-structure R" x G C F(R").
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Examples of G-structures

Coframes <= {e}-structures;

Riemannian structures <= Op-structures;

Almost symplectic structures <= Sp,-structures;
Almost complex structures <= GLj(C)-structures;
Almost hermitian structures <= Up-structures.

A G-structure P — M is called integrable if it is locally equivalent to the trivial
G-structure R" x G C F(R").

Integrable Op-structures <= flat Riemannian structures;
Integrable Sp,,-structures <= symplectic structures ;
Integrable GL,(C)-structures <= complex structures;
Integrable Up-structures <= flat Kahler structures.
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Connections on G-structures

A connection on P — Mis a 1-form w € Q'(P, g) satisfying:
Bl Vertical: w(a) = o, forall o € g;
B G-equivariant: g*w = Ad, 1 ow, forall g € G.
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Connections on G-structures

A connection on P — Mis a 1-form w € Q'(P, g) satisfying:
Bl Vertical: w(a) = o, forall o € g;
B G-equivariant: g*w = Ad, 1 ow, forall g € G.

If (P,0,w) is a G-structure with connection:

(9,w)p . TpP = RnGBQ
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Connections on G-structures

A connection on P — Mis a 1-form w € Q'(P, g) satisfying:
Bl Vertical: w(a) = o, forall o € g;
B G-equivariant: g*w = Ad, 1 ow, forall g € G.

If (P,0,w) is a G-structure with connection:
0,w)p: ToP =R g

= (0,w) is a coframe
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Connections on G-structures

A connection on P — Mis a 1-form w € Q'(P, g) satisfying:
Bl Vertical: w(a) = o, forall o € g;
B G-equivariant: g*w = Ad, 1 ow, forall g € G.

If (P,0,w) is a G-structure with connection:
(9,w)p B TpP l) Rn @ g
= (0,w) is a coframe which satisfies the structure equations:

d0=TONO) —wAb
dw=R(ONO) —wAw
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Connections on G-structures

A connection on P — Mis a 1-form w € Q'(P, g) satisfying:
Bl Vertical: w(a) = o, forall o € g;
B G-equivariant: g*w = Ad, 1 ow, forall g € G.

If (P,0,w) is a G-structure with connection:
(9,w)p B TpP l) Rn @ g
= (0,w) is a coframe which satisfies the structure equations:

d0=TONO) —wAb
dw=R(ONO) —wAw

where:
- T:P— Hom(/\ZR",R") —torsion
- R: P — Hom(A2R", g) — curvature
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Equivalence of G-structures with connection

(P;, 0;,wj) — G-structures with connection

Definition
A (local) equivalence is a (local) G-bundle isomorphism ¢ : Py — P, which preserves
the coframes:

@0 =01, ¢wr = ws.
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Equivalence of G-structures with connection

(P;, 0;,wj) — G-structures with connection

Definition
A (local) equivalence is a (local) G-bundle isomorphism ¢ : Py — P, which preserves
the coframes:

@0 =01, ¢wr = ws.

Equivalence problem:
m When are two G-structures with connection (locally) equivalent?

ja Fernandes The geometry of Cartan’s realization problems
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The Structure Functions 257

to each other by a diffeomorphism ®: M — M, so that
®*P =6, i=1,...,m. (8.7

In our treatment, we shall only look at local equivalence, meaning that
the diffeomorphism & is only required to be defined on a suitable open
subset of M — see the end of Chapter 14 for some remarks on the global
equivalence problem. Cartan made the fundamental observation that
the invariance of the exterior derivative operator d under smooth maps,
cf. Theorem 1.36, is the key to the solution of the coframe equivalence
problem. Thus, if (8.7) holds, we also necessarily have

o*df' =df, i=1,...,m. (8.8)

The solution to the equivalence problem for coframes lies in the detailed
analysis of the differentiated conditions (8.8).

G . v noe PR |

Rui Loja Fernandes The geometry of Cartan’s re: tion problems



Algebroids
O@0000

Invariant forms

(P, 0,w) — G-structure with connection

A form a € Q¥(P) is called invariant if for every local equivalence ¢ : P — P:

¢ a = a.

We denote by Q°(P, 0, w) the space of invariant forms.
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Invariant forms

(P, 0,w) — G-structure with connection

Definition

A form a € Q¥(P) is called invariant if for every local equivalence ¢ : P — P:
¢ a = a.

We denote by Q°(P, 0, w) the space of invariant forms.

Basic Remark: Q°(P, 0, w) is preserved under exterior differentiation.

a€eQ*(P,bw) = dacQ*(P,0,w)

ja Fernandes The geometry of Cartan’s realization problems
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Fully regular G-structures

(P,0,w) is called fully regular when the spaces
{d,,/ 1€ QP,6,w)} C T;P},

have constant dimension (independent of p € P).

ja Fernandes The geometry of Cartan’s realization problems
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Fully regular G-structures

(P,0,w) is called fully regular when the spaces
{d,,/ 1€ QP,6,w)} C T;P},

have constant dimension (independent of p € P).

If (P, 6,w) is fully regular, 3 space Xy, & submersion h: P — X ., so that:

Q%(P,0,w) = h*C>(X(g,.)-

ja Fernandes The geometry of Cartan’s realization problems
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Fully regular G-structures

(P,0,w) is called fully regular when the spaces
{d,,/ 1€ QP,6,w)} C T;P},

have constant dimension (independent of p € P).

If (P, 6,w) is fully regular, 3 space Xy, & submersion h: P — X ., so that:

Q%(P,0,w) = h*C>(X(g,.)-

In fact, more is true:

Proposition

For a fully regular G-structure with connection (P, 0, w):
Q°(P,0,w) = Q*(Agp,w)) = T(A°Afp ),

where Ag ) = Xo,w) X (R" @ g) = X(g,0)-

Rui Loja Fernandes The geometry of Cartan’s realization problems
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Lie algebroids and G-structures

It follows that for a fully regular (P, 6, w) we have:
m A vector bundle A — X;
m alinear operator dg : Q°(A) — Q**+1(A);

ja Fernandes The geometry of Cartan’s realization problems
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Lie algebroids and G-structures

It follows that for a fully regular (P, 6, w) we have:
m A vector bundle A — X;
m alinear operator dg : Q°(A) — Q**+1(A);
satisfying:
b <=0

H di(anp) =daanB+ (=1)elandys.
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Lie algebroids and G-structures

It follows that for a fully regular (P, 6, w) we have:
m A vector bundle A — X;
m alinear operator dg : Q°(A) — Q**+1(A);
satisfying:
b <=0
H di(anp) =daanB+ (=1)elandys.
This is what is called a Lie algebroid, though it is more commonly defined as:
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Lie algebroids and G-structures

It follows that for a fully regular (P, 6, w) we have:
m A vector bundle A — X;
m alinear operator dg : Q°(A) — Q**+1(A);
satisfying:
b <=0
H di(anp) =daanB+ (=1)elandys.
This is what is called a Lie algebroid, though it is more commonly defined as:

Definition

A Lie algebroid is a vector bundle A — X with:
m A Lie bracket [+, -]a; [(A) x ['(A) — T'(A);
m Abundle map pg: A — TM;

satisfying the Leibniz identity:

[s1,fs2]a = f[s1, S2]a + p(81)(f) 2.

Rui Loja Fernandes The geometry of Cartan’s re:
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Lie algebroids

Definition

A Lie algebroid is a vector bundle A — X with:
m A Lie bracket [-, -]a; [(A) x ['(A) — ['(A);
m Aanchormap ps: A— TM;

satisfying:

[s1,fs2]a = f[s1, S2]a + p(81)(f) 2.

Main idea: Think of (A, [-, ], pa) as a generalized tangent bundle.

ja Fernandes The geometry of Cartan’s realization problems
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Lie algebroids

A Lie algebroid is a vector bundle A — X with:
m A Lie bracket [+, -]a; [(A) x ['(A) — T'(A);
m Aanchormap ps: A— TM;
satisfying:
[s1,fs2]a = f[s1, S2]a + p(s1)(f) S2.

Main idea: Think of (A, [-, ‘], pa) as a generalized tangent bundle.

A Lie algebroid is a vector bundle A — X with a linear operator:
dy : Q°(A) — Q°F1(A),

satisfying:
| <=0

H dx(anpB) =daanB+ (1)l AdyB.

e
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Lie algebroids

Definition

A Lie algebroid is a vector bundle A — X with:
m A Lie bracket [, -]a; T(A) x [(A) — T'(A);
m Aanchormap ps: A— TM;

satisfying:
[s1, 1 82]a = f[s1, S2]a + p(81)(f) S2.

The A-forms Q°(A) := ['(A®A*) inherit a differential d4 : Q%(A) — Qk+1(A):
daa(So, .-, 8k) = > _(=1)pa(si)(a(So - -, 8ir - -, SKk))+
i

S (=1 o([si, 14 S0, - Sir- -1 5y, k)
i<j

satisfying:
=0, da(anB)=daanB+(=1)andss.

Rui Loja Fernandes The geometry of Cartan’s re: tion problems
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Lie algebroids

Definition
A Lie algebroid is a vector bundle A — X with a linear operator

dy : Q°(A) = Q*H1(A),

satisfying:
H <=0

B di(anB) =daa A+ (=1)*la Adag.

One defines the anchor p4 : A — TM and Lie bracket [-, ] 4 on I'(A) by:

pA(S)(f) = daf(s),
([s1, 82]a, @) := da(a(s2)))(s1) — da(a(s1)))(s2) — daa(si, S2).

satisfying:
[s1,fsp]a = f[s1, S2]a + p(51)(f) s2.

Rui Loja Fernandes The geometry of Cartan’s re: tion problems
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Summary

Given (P, 0,w) a fully regular G-structure with connection, we have a classify-
ing Lie algebroid Ay .,y — X,.,) and a classifying bundle map:

P — > A

| }

P —= X,0)

such that:
Q*(P,0,w) = H*Q*(A(g,u))-
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Summary

Given (P, 0,w) a fully regular G-structure with connection, we have a classify-
ing Lie algebroid Ay .,y — X,.,) and a classifying bundle map:

P — > A

| }

P —= X,0)

such that:
Q*(P,0,w) = H*Q*(A(g,u))-

Moreover:
m (H, h)is a Lie algebroid map: H*(da) = d(H*a), Va € Q*(A(g,w));
m TP and A, ., carry G-actions by Lie algebroid automorphisms for which (H, h)
is G-equivariant;
m A, is atransitive Lie algebroid: Imp = TXg ).

Rui Loja Fernandes The geometry of Cartan’s re: tion problems
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Families of G-structures

In a classification problem one is not given, a priori, one G-structure. Rather,
one has differential equations determining a family of G-structures.
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Realization problem
®00

Families of G-structures

In a classification problem one is not given, a priori, one G-structure. Rather,
one has differential equations determining a family of G-structures.

One seeks all G-structures P — M, satisfying structure eqgs:
dd=TOANO)—wAb, do=RONO)—wAw (1)

where possible values of torsion and curvature are constrained:
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Realization problem
®00

Families of G-structures

In a classification problem one is not given, a priori, one G-structure. Rather,
one has differential equations determining a family of G-structures.

One seeks all G-structures P — M, satisfying structure eqgs:
dd=TOANO)—wAb, do=RONO)—wAw (1)

where possible values of torsion and curvature are constrained:

m There is G-equivariant map h: P — X into G-manifold X such that torsion and
curvature factor through X:

R=R(h) T=T(h),

for G-equivariant maps R : X — Hom(A’R”, g) and T : X — Hom(A®R", R").
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Realization problem
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Families of G-structures

In a classification problem one is not given, a priori, one G-structure. Rather,
one has differential equations determining a family of G-structures.

One seeks all G-structures P — M, satisfying structure eqgs:
dd=TOANO)—wAb, do=RONO)—wAw (1)

where possible values of torsion and curvature are constrained:

m There is G-equivariant map h: P — X into G-manifold X such that torsion and
curvature factor through X:

R=R(h) T=T(h),

for G-equivariant maps R : X — Hom(A’R”, g) and T : X — Hom(A®R", R").
m Since (0,w) is a coframe, h: P — X also satisfies structure equations:

dh = F(h,0) + ¥(h,w), @)

where F : X x R" — TX is G-equivariantand ¢ : X x g — TX is g-action.

Rui Loja Fernandes The geometry of Cartan’s realization problems
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Cartan’s Realization Problem

One is given Cartan Data:
m a closed Lie subgroup G C GL(n,R);
m a G-manifold X with infinitesimal action ¢ : X x g — TX;
m equivariant maps T : X — Hom(A?R",R"), R : X — Hom(A?R", g) and
F: XxR'— TX;

ja Fernandes The geometry of Cartan’s realization problems



Realization problem
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Cartan’s Realization Problem

One is given Cartan Data:
m a closed Lie subgroup G C GL(n,R);
m a G-manifold X with infinitesimal action ¢ : X x g — TX;
m equivariant maps T : X — Hom(A?R",R"), R : X — Hom(A?R", g) and
F: XxR'— TX;

One seek solutions:
m an n-dimensional orbifold M;
m a G-structure P — M with tautological form 6 € Q'(P, R") and connection
1-form w € Q'(P, g);
B an equivariantmap h: P — X;
satisfying:

d0=Th)(ONO)—wA¥,
dw=RM)(ONO) —wAw
dh = F(h,0) + ¢(h,w).

ja Fernandes The geometry of Cartan’s realization problems



Realization problem
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Cartan’s Realization Problem

One is given Cartan Data:
m a closed Lie subgroup G C GL(n,R);
m a G-manifold X with infinitesimal action ¢ : X x g — TX;
m equivariant maps T : X — Hom(A?R",R"), R : X — Hom(A?R", g) and
F: XxR'— TX;

One seek solutions:
m an n-dimensional orbifold M;
m a G-structure P — M with tautological form 6 € Q'(P, R") and connection
1-form w € Q' (P, g);
B an equivariantmap h: P — X;
satisfying:

d0=Th)(ONO)—wA¥,
dw=RM)(ONO) —wAw
dh = F(h,0) + ¢(h,w).

Again, these can be interpreted in terms of a Lie algebroid!
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Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A= X x (R" & g) — X.
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Realization problem
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Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A= X x (R" & g) — X.

— Cartan data gives:

m Alinear operator dg : 2°(A) — Q°*(A): on 0-forms and 1-forms are given by
equations and extends to any k-form by da(a A 8) = daa A B+ (—1)1%la A dagB.
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Realization problem
ooe

Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A= X x (R" & g) — X.

— Cartan data gives:

m Alinear operator dg : 2°(A) — Q°*(A): on 0-forms and 1-forms are given by
equations and extends to any k-form by da(a A 8) = daa A B+ (—1)1%la A dagB.

Alternatively:

B A bracket on I'(A):
[(U, O‘): (V’ 5)] = (a V= :8 Cu— T(U, V)’ [057 B]B - R(U, V))’
m Abundlemapp: A— TX:

p(u,a) = F(u) +¢(a), (u,0) ER"Dg.
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Realization problem
ooe

Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A= X x (R" & g) — X.

— Cartan data gives:

m Alinear operator dg : 2°(A) — Q°*(A): on 0-forms and 1-forms are given by
equations and extends to any k-form by da(a A 8) = daa A B+ (—1)1%la A dagB.

Alternatively:

= A bracket on [(A):
[(u,0), (v, B)] = (- v = B-u—T(u,v),[e Blg — R(u, v)),
m Abundle map p: A — TX:
p(u,a) = F(u) +¥(), (u,0) ER" & g.

— A solution (P, 8, w) is a G-principal bundle together with G-equivariant algebroid map:
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Realization problem
ooe

Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A= X x (R" & g) — X.

— Cartan data gives:
m A linear operator dg : Q°(A) — Q*(A): on O-forms and 1-forms are given by
equations and extends to any k-form by da(a A 8) = daa A B+ (—1)lela AdaB.
Alternatively:

B A bracket on I'(A):
((u;0), (v, B)] = (- v —=B-u—T(u V), Blg — Ru,v)),
m Abundlemapp: A— TX:
p(u,a) = F(u) + (e), (U,0) ER"@ .
— A solution (P, 8, w) is a G-principal bundle together with G-equivariant algebroid map:

.

A
v v
P——sX

h

There exists a solution through every x € X if and only if A— X is a Lie algebroid. J
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Realization problem
ooe

Cartan’s Realization Problem: algebroid picture

Take trivial vector bundle: A= X x (R" & g) — X.

— Cartan data gives:
m A linear operator dg : Q°(A) — Q*(A): on O-forms and 1-forms are given by
equations and extends to any k-form by da(a A 8) = daa A B+ (—1)lela AdaB.
Alternatively:

B A bracket on I'(A):
((u;0), (v, B)] = (- v —=B-u—T(u V), Blg — Ru,v)),
m Abundlemapp: A— TX:
p(u,a) = F(u) + (e), (U,0) ER"@ .
— A solution (P, 8, w) is a G-principal bundle together with G-equivariant algebroid map:

.

A
v v
P——sX

A Lie algebroid of this form is called a G-structure Lie algebroid with connection.
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An example
[ elele]

An example: Extremal Kahler surfaces

A Kahler surface (M?, g, o, J) is called extremal if the Hamiltonian vector field Xk
associated with the Gaussian curvature K is an infinitesimal isometry.
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An example
[ elele]

An example: Extremal Kahler surfaces

Definition
A Kahler surface (M?, g, o, J) is called extremal if the Hamiltonian vector field Xk
associated with the Gaussian curvature K is an infinitesimal isometry.

Classification Problem: Find all extremal Kahler surfaces up to isomorphism.
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An example
[ elele]

An example: Extremal Kahler surfaces

Definition

A Kahler surface (M?, g, o, J) is called extremal if the Hamiltonian vector field Xk
associated with the Gaussian curvature K is an infinitesimal isometry.

Classification Problem: Find all extremal Kahler surfaces up to isomorphism.

Unitary frame bundle:
Fyy(M) := {u : C — (TxM, Jx) | complex linear isomorphism}
Tautological form: 6 € Q' (Fy1y(M),C)

Levi-Civita connection: w € Q" (Fy1)(M),u(1))
Structure Equations: Identifying u(1) ~ iR
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An example
[e] Tele]

Differential analysis

Pullback of the symplectic form o under 7 : Fy(1y(M) — M:

o =—L0n0.

NI~
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An example
[e] Tele]

Differential analysis

Pullback of the symplectic form o under 7 : Fy(1y(M) — M:

— If Xk denotes the lift of Xy

dK = —(T0 + T0), with

3% (ON0) = —g 770 = —dK = {T Fuay(M) = C, T = 56(Xk)
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An example
[e] Tele]

Differential analysis

Pullback of the symplectic form o under 7 : Fy(1y(M) — M:

— If Xk denotes the lift of Xy

dK = —(T0 + T0), with
3% (0/\9) —1% 7r07—dK = {T Fugn (M) — C, T——B(XK)

— Since £)~(Kc9 = 0, 1st structure equation yields:

dT = U — Tw, with

dT = bdog 0 =—L1y df = Loy (wnO =>{
' 2 %40 = 2%, (W) U Fy(M) = R, U= hw(X)
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An example
[e] Tele]

Differential analysis

Pullback of the symplectic form o under 7 : Fy(1y(M) — M:

— If Xk denotes the lift of Xy

dK = —(T0 + T0), with
3% (0/\0) —1% 7r07—dK = {TFU (M) = C, T——B(XK)
— Since ﬁ;(KG = 0, 1st structure equation yields:

dT = U — Tw, with

i i, — o,
T = forg 0= b0 = oz rd) = L o i

— Since Xy is infinitesimal isometry, L;(Kw = 0, 2nd structure equation yields:

dU:i'd%wzfi%de:fiKz;(K(Q/\@_) = dU:fg(:f‘9+T9_)
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An example
[e]e] o]

Algebroid of extremal Kahler surfaces

Conclusion: An extremal Kahler surface amounts to:

m U(1)-structure P — M w/ tautological form 9 € Q'(P, C), connection form
w € Q'(P,iR), and

mamap (K, T,U): P> RxCxR

satisfying:
dd=—-wA®0
dw = g H_/\ 0
dK = —(T0 4 Th) (%)
dT = U0 — Tw

dU = —K(To + 70)

The quotient M = P/U(1) is the desired extremal Kahler surface.
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An example
[e]e] o]

Algebroid of extremal Kahler surfaces

Conclusion: An extremal Kahler surface amounts to:

m U(1)-structure P — M w/ tautological form 9 € Q'(P, C), connection form
w € Q'(P,iR), and

mamap (K, T,U): P> RxCxR

satisfying:
dd=—-wA®0
dw = g H_/\ 0
dK = —(T0 4 Th) (%)
dT = U0 — Tw

dU = —K(To + 70)

The quotient M = P/U(1) is the desired extremal Kahler surface.

The differential equations (x) define a Lie algebroid!
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An example
[e]e]e] )

Algebroid of extremal Kahler surfaces

The differential equations

dd = —w ANl
dw:%&/\é
dK:f(7'9+7'9_)
dT = U6 — Tw

dU = —K(To+ T9)
define a Lie algebroid!
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An example
[e]e]e] )

Algebroid of extremal Kahler surfaces

The differential equations

dd = —w ANl
dw:%&/\é
dK:f(7'9+7'9_)
dT = U6 — Tw

dU = —K(To+ T9)
define a Lie algebroid!
A=(RxCxR)x(C®R) — X=RxCxR
(with global coordinates (K, T, U))
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An example
[e]e]e] )

Algebroid of extremal Kahler surfaces

The differential equations

dd = —w ANl
dw:%&/\é
dK:f(7'9+7'9_)
dT = U6 — Tw

dU = —K(To+ T9)
define a Lie algebroid!
A=(RxCxR)x(C®R) — X=RxCxR
(with global coordinates (K, T, U))

Differential: d4 is determined by egs on 0-forms and 1-forms and extends to any
k-form by da(a A 8) = daa A B+ (—1)1*la A dgg.
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An example
[e]e]e] )

Algebroid of extremal Kahler surfaces

The differential equations

dd = —w ANl
dw—%&/\é
dK:f(7'9+7'9_)
dT = U6 — Tw

dU = —K(To+ T9)
define a Lie algebroid!

A=(RxCxR)x(C®R) — X=RxCxR

(with global coordinates (K, T, U))

Differential: d4 is determined by egs on 0-forms and 1-forms and extends to any
k-form by da(a A 8) = daa A B+ (—1)1*la A dgg.

Alternatively:

Lie bracket: [(z,a), (W, B)ll(k,T,u) := (aw — Bz, — K (2% — zw)

)
Anchor: p(z,a)|k,T,u) = <— Tz-Tz,Uz—aT,- K72 - gTz)
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An example
[e]e]e] )

Algebroid of extremal Kahler surfaces

The differential equations

dd = —w ANl
dw—%&/\é
dK:f(7'9+7'9_)
dT = U6 — Tw

dU = —K(To+ T9)
define a Lie algebroid!

A=(RxCxR)x(C®R) — X=RxCxR
(with global coordinates (K, T, U))
Differential: d4 is determined by egs on 0-forms and 1-forms and extends to any

k-form by da(a A 8) = daa A B+ (—1)1*la A dgg.

Alternatively:
Lie bracket: [(z,a), (W, B)]|(k,T,u) == (aw — Bz, —g(zv'v —zw))
Anchor: p(z, )|k, 7,0y == (- Tz—Tz,Uz—aT, KTz - g?z)
It comes with a right U(1)-action:

(K7 T, U)g:(Kvgi‘]T? U)7 (Z7a)g:(g712704).
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General Theory
[ Jolele]e}

G-principal groupoids
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General Theory
[ Jolele]e}

G-principal groupoids

In order to solve the realization problem, we need the global objects integrating
G-structure Lie algebroids with connection.
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General Theory
[ Jolele]e}

G-principal groupoids

In order to solve the realization problem, we need the global objects integrating
G-structure Lie algebroids with connection.

Definition

A G-principal groupoid is a Lie groupoid ' = X with a right principal action T x G — I
satisfying:
(1-72)g="7-(129), ¥(n 1) er®, gea
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General Theory
[ Jolele]e}

G-principal groupoids

In order to solve the realization problem, we need the global objects integrating
G-structure Lie algebroids with connection.

Definition

A G-principal groupoid is a Lie groupoid ' = X with a right principal action T x G — I
satisfying:
(1-72)g="7-(129), ¥(n 1) er®, gea

A morphism of G-principal groupoids is a G-equivariant groupoid morphism
® : 1 — > between G-principal groupoids.
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General Theory
[ Jolele]e}

G-principal groupoids

In order to solve the realization problem, we need the global objects integrating
G-structure Lie algebroids with connection.

Definition

A G-principal groupoid is a Lie groupoid ' = X with a right principal action T x G — I
satisfying:
(1-72)g="7-(129), ¥(n 1) er®, gea
A morphism of G-principal groupoids is a G-equivariant groupoid morphism
® : 1 — > between G-principal groupoids.

Remark. Each t—'(x) is a G-principal bundle over M = t—'(x)/G. Hence, a
G-principal groupoid is a family of G-principal bundles parameterized by X. .
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General Theory
[¢] le]e]e}

G-structure groupoids

G C GL(n,R) — closed subgroup
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General Theory
[¢] le]e]e}

G-structure groupoids

G C GL(n,R) — closed subgroup

Definition

A G-structure groupoid consists of a G-principal groupoid ' = X with left-invariant
1-form © € Q] (I', R") whose restriction to each fiber t="(x) is a tautological form.

ja Fernandes The geometry of Cartan’s realization problems



General Theory
[¢] le]e]e}

G-structure groupoids

G C GL(n,R) — closed subgroup

Definition

A G-structure groupoid consists of a G-principal groupoid ' = X with left-invariant
1-form © € Q] (I', R") whose restriction to each fiber t=(x) is a tautological form.
A morphism of G-structure groupoids ¢ : (I'1,©4) — (2, ©2) is @ morphism of
G-principal groupoids such that *©, = ©4.

ja Fernandes The geometry of Cartan’s realization problems



General Theory
[¢] le]e]e}

G-structure groupoids

G C GL(n,R) — closed subgroup

Definition

A G-structure groupoid consists of a G-principal groupoid ' = X with left-invariant
1-form © € Q] (I', R") whose restriction to each fiber t=(x) is a tautological form.
A morphism of G-structure groupoids ¢ : (I'1,©4) — (2, ©2) is @ morphism of
G-principal groupoids such that *©, = ©4.

Remark. Each t-fiber t—1(x) is a G-structure over M = t—1(x)/G. Hence, a
G-structure groupoid is a family of G-structures parameterized by X.
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General Theory
[e]e] le]e}

Connections on G-principal groupoids
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General Theory
[e]e] le]e}

Connections on G-principal groupoids

A connection 1-form on a G-principal groupoid I' = X is a left-invariant 1-form
Q € Q}(I, g) whose restriction to each fiber t='(x) is a connection form.
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General Theory
[e]e] le]e}

Connections on G-principal groupoids

Definition

A connection 1-form on a G-principal groupoid I' = X is a left-invariant 1-form
Q € Q} (I, g) whose restriction to each fiber t='(x) is a connection form.

A morphism of G-principal groupoids with connection is a G-principal groupoid
morphism & : 'y — ;> preserving connection forms: ®*Q, = Q4.
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General Theory
[e]e] le]e}

Connections on G-principal groupoids

Definition

A connection 1-form on a G-principal groupoid I' = X is a left-invariant 1-form
Q € Q} (I, g) whose restriction to each fiber t='(x) is a connection form.

A morphism of G-principal groupoids with connection is a G-principal groupoid
morphism & : 'y — ;> preserving connection forms: ®*Q, = Q4.

Remark. Each fiber t—'(x) is a G-principal bundle with connection over
M =t="(x)/G. . Hence, we have a family of G-principal bundles with connection

parameterized by X.
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General Theory
[e]e]e] le}

Global Objects

Given a closed subgroup G C GL(n,R), the relevant global objects for the
equivalence problem are G-structure groupoids with connection:

r=X, ©cQ(,R"), Qecl(,g).

They describe a family of G-structures with connection parameterized by X.
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General Theory
[e]e]e] le}

Global Objects

Given a closed subgroup G C GL(n,R), the relevant global objects for the
equivalence problem are G-structure groupoids with connection:

r=X, ©cQ(,R"), Qecl(,g).

They describe a family of G-structures with connection parameterized by X.

Theorem
If (I = X,©,Q) is a G-structure groupoid with connection, then its Lie algebroid
A = Lie(I') — X is a G-structure Lie algebroid with connection.

7
| \.
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General Theory
[e]e]e]e] }

Solving Cartan realization problem

Classification problem for “iffe"e"‘“:d';"‘*‘ysi* G-structure algebroid
geometric structures with connection




General Theory
[e]e]e]e] }

Solving Cartan realization problem

Classification problem for ~ differentiaslanalysis & g0ty algebroid
geometric structures with connection
G-structure algebroid @221 G grcture groupoid
g — group

with connection with connection




General Theory
[e]e]e]e] }

Solving Cartan realization problem

Classification problem for “iffe"e"‘“:d';"‘*‘ysi* G-structure algebroid
geometric structures with connection

G-structure algebroid G 1MERIN G girycture groupoid
with connection with connection

G-structure groupoid  —  Solutions: t~'(x)/G
with connection




General Theory
[e]e]e]e] }

Solving Cartan realization problem

Classification problem for ~ differentislanalysis & ¢t 0ryre algebroid
geometric structures with connection
G-structure algebroid ~ “ 221" G ructure groupoid
g i group

with connection with connection

G-structure groupoid  —  Solutions: t~'(x)/G
with connection

Every solution is covered by an open subset of a solution of the formt=1(x)/G for a
G-integration.
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General Theory
[e]e]e]e] }

Solving Cartan realization problem

Classification problem for ~ differentiaslanalysis & o1 cryre algebroid
geometric structures with connection

G-structure algebroid ~ FMSERIN G giructure groupoid
with connection with connection

G-structure groupoid  —  Solutions: t~'(x)/G
with connection

Every solution is covered by an open subset of a solution of the formt~'(x)/G for a
G-integration.

Important addenda:
m ltis enough to G-integrate the restriction of A — X to the orbit containing x € X.
m There is a (computable) obstruction theory for G-integrability.
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Example: solutions
@000

Finding the extremal Kahler surfaces
The algebroid A — X ~ R*

A=RXxCxR)x (CHIR) — X=RxCxR~R
(with global coordinates (K, T, U))

[(z,a), (W, B)l(k,T,0) := (aw — Bz, — K (ziw — zw

)
p(2, ) k. T.0) = (sz ~Tz,Uz—aT,-KTz -

(SIS

'Tz) ,

has orbits:
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Example: solutions
@000

Finding the extremal Kahler surfaces
The algebroid A — X ~ R*

A=RXxCxR)x (CHIR) — X=RxCxR~R
(with global coordinates (K, T, U))

[(z,a), (W, B)l(k,T,0) := (aw — Bz, — K (ziw — zw

)
oz )y = (-T2 =Tz Uz —aT, - 5Tz -

(SIS

'Tz) ,
has orbits:

m the points (K, 0, 0, 0), with isotropy so(3,R) (if K > 0), s[(2,R) (if K < 0) and
50(2,R) x R (if K = 0);
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Example: solutions
@000

Finding the extremal Kahler surfaces
The algebroid A — X ~ R*

A=RXxCxR)x (CHIR) — X=RxCxR~R
(with global coordinates (K, T, U))

[(z,a), (W, B)l(k,T,0) := (aw — Bz, — K (ziw — zw

)
oz )y = (-T2 =Tz Uz —aT, - 5Tz -

(SIS

'Tz) ,

has orbits:
m the points (K, 0, 0, 0), with isotropy so(3,R) (if K > 0), s[(2,R) (if K < 0) and
50(2,R) x R (if K = 0);
m the 2-dimensional submanifolds of R* given by U(1)-rotation of the curves in R3:

U=1K2—c, |TP=-LK+cK+eo.
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Example: solutions
@000

Finding the extremal Kahler surfaces
The algebroid A — X ~ R*

A=RXxCxR)x (CHIR) — X=RxCxR~R
(with global coordinates (K, T, U))

[(z,a), (W, B)l(k,T,0) := (aw — Bz, — K (ziw — zw

)
oz )y = (-T2 =Tz Uz —aT, - 5Tz -

(SIS

'Tz) ,

has orbits:

m the points (K, 0, 0, 0), with isotropy so(3,R) (if K > 0), s[(2,R) (if K < 0) and
50(2,R) x R (if K = 0);
m the 2-dimensional submanifolds of R* given by U(1)-rotation of the curves in R3:

U=1K2—c, |TP=-LK+cK+eo.

The values of ¢y and ¢, (hence A = 4‘—8(160f' —9¢2)) determine if an orbit O has
topology, and hence determines the G-integrability of A|o.
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Example: solutions
o] lele)]

The 1-connected extremal Kahler surfaces

Conditions U(1)-frame bundle: s~ (x) Solutions: s~ (x)/U(1) complete solutions
K=0 S0(2) x R? R? Yes
K=c>0 8 s? Yes
K=c<0 S0(2,1) H? Yes
A=0,ci=c =0 (R? x R)/Z R? No
A=0,c<0 R? x §! R? No
A=0,0p >0 (R? x R)/Z 2 Yes
(R? x s") No
A<O R? x ' R? No
A>0 R? x ! R? No
(if ‘:320‘_7:;2? = §) sé C]P’lh q Yes
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Example: solutions
[e]o] le]

Final comments

Other byproducts of the theory:
m Give existence and unique of solutions for any Cartan realization problem.
m Allows to determine which solutions are complete.
m Yields infinitesimal and global symmetries of solutions.
m Describes deformations and moduli space of solutions.
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Example: solutions
[e]o] le]

Final comments

Other byproducts of the theory:
m Give existence and unique of solutions for any Cartan realization problem.
m Allows to determine which solutions are complete.
m Yields infinitesimal and global symmetries of solutions.
m Describes deformations and moduli space of solutions.

Still many things to be worked out, e.g (in progress):
m Extend theory to G-structure of finite type k > 1;
m Extend theory to infinite dimensions (profinite algebroids);
m Work out more examples.
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Example: solutions
[e]o]e] )

Thank you!
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