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... And this devotion [to biology]
is achieved only by deep understanding
of beauty, infinity, symmetry,
and harmony in nature.

Taras Shevchenko (1814–1861), the great Ukrainian poet.
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Introduction: references, motivation

The talk is based on the recent paper
R.Cherniha and V. Davydovych: Construction and application of exact
solutions of the diffusive Lotka–Volterra system: A review and new results.
Commun. in Nonlin. Sci. and Num. Simul. 113 (2022) 106579
The relevant older works are

Cherniha R.2010 Conditional symmetries for systems of PDEs: new
definition and their application for reaction-diffusion systems. J Phys A
Math Theor. 43 405207.

Cherniha R and Davydovych V 2011 Conditional symmetries and exact
solutions of the diffusive Lotka-Volterra system Math. Comput.
Modelling. 54 1238–51

Cherniha R and Davydovych V 2013 Lie and conditional symmetries of the
three-component diffusive Lotka-Volterra system. J Phys A: Math and
Theor ; vol.46, 185204 (18pp)

Cherniha R., Davydovych V. Nonlinear reaction-diffusion systems —
conditional symmetry, exact solutions and their applications in biology.
Springer 2017.
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Introduction: references, motivation

About 100 years ago, Alfred Lotka (1920) and Vito Volterra(1926)
independently developed a mathematical model, which nowadays serves as a
mathematical background for population dynamics, chemical reactions, ecology,
etc. The model is based on a system of ordinary differential equations (ODEs)
involving quadratic nonlinearities (typically two equations). Following some
earlier papers, in which linear models were used chemical reactions
[Hirniak-1908,Hirniak-1911], Lotka has shown that the densities in periodic
chemical reactions can be adequately described by a model involving ODEs
with quadratic nonlinearities. In contrast to Lotka, Volterra, as a
mathematician, was inspired by the information that the amount of predatory
fish caught in Italy varied periodically and suggested a prey–predator model for
the interaction of two populations of fishes.
The classical Lotka–Volterra system consists of two nonlinear ODEs of the form

du
dt

= u(a − bv),
dv
dt

= v(−c + du),
(1)

where the functions u(t) and v(t) represent the numbers of prey and
predators, while a, b, c and d are positive parameters.
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Introduction: references, motivation

Later it was shown that systems of differential equations with quadratic
nonlinearities can describe many other types of interaction between species,
chemicals, cells, etc. Moreover, their diffusion in space can also be taken into
account. Thus, the m-component system is obtained

u
i
t = diu

i
xx + u

i

(

ai +

m
∑

j=1

biju
j

)

, i = 1, . . . , m, (2)

which is called the diffusive Lotka–Volterra system (DLV system).

Hereinafter u1(t, x), u2(t, x), . . . , um(t, x) are unknown functions,di ≥ 0, ai

and bij are arbitrary parameters. However, these parameters should guarantee
that the system is nonlinear and all equations cannot be autonomous
(otherwise its applicability is questionable).
Depending on the signs of these coefficients, different types of interaction
between m types of species, chemicals, cells, etc. can be modeled.
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Introduction: references, motivation

In the scalar case, the DLV system is reducible to the famous Fisher equation

ut = uxx + u(1 − u) (3)

is u(t, x) suggested by RA Fisher in 1937 in order to describe the spread in
space of a favoured gene in a population. The Fisher equation cannot be
exactly solved taking into account any reasonable initial and boundary
conditions in a bounded domain (e.g. a finite interval). There is only known
the exact solution in the form of the traveling front (TF), which satisfies the
natural conditions at infinity x = ±∞. The solution was found in [Ablowitz M
& Zeppetella A, 1979]:

u =
1

4

(

1 − tanh
( 1

2
√

6
(x − 5√

6
t + x0)

))2

, (4)

It should be also stressed that the Fisher eq. admits only a trivial Lie symmetry
and does not possesses non-classical symmetry (conditional symmetry). Thus,
construction its exact solutions still is an highly non-trivial problem.
There are some studies devoted to search for exact solutions of the Fisher
equation claiming that new those have been found. However, to the best of my
knowledge, they either can be reduced to (4), or are not smooth, or don’t
satisfy any reasonable boundary conditions.
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Introduction: references, motivation

The problem which occurs in finding exact solutions of the Fisher equation is
very natural, because one is a nonlinear PDE. Typically, the mathematical
models used for description of biomedical processes are based on nonlinear
PDEs and usually they are non-linearizable (in contrast to many problems
occurring in physics !).
The well known principle of linear superposition cannot be applied to generate
new exact solutions to nonlinear PDEs. Thus, the classical methods (the
Fourier method, the methods of the Laplace transformations and the Green
function, etc) are not applicable for solving such PDEs.
Thus, construction of particular exact solutions for these equations is a
non-trivial problem. Finding exact solutions that have an appropriate physical,
chemical or biological interpretation is of fundamental importance.
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Definitions of Q-conditional symmetry

Modern symmetry based (group-theoretical) methods, which are based on the
classical Lie method (CLM), are the most powerful methods to construct exact
solutions of nonlinear PDEs. CLM was created by Sophus Lie in the end of XIX
century. There are several excellent books devoted to this method and its
applications to PDEs (Ovsiannikov, Olver, Bluman et al, Fushchych et al,...).

In 1969, Bluman & Cole introduced an essential generalization of CLM, which
is often called the non-classical symmetry method. Notably their paper was
widely ignored until 1986 when Olver & Rosenau brought attention to the
Bluman & Cole work.
Both methods allow us to construct Lie symmetries and Q-conditional
(non-classical) symmetries in the form of linear 1st order differential operators.
Having the known Lie or conditional symmetry for a nonlinear PDE in question
and using a standard algorithm, one constructs ansatz, which allows to reduce
the nonlinear PDE to an equation of lower dimensionality. A typical form of the
ansatz for a (1+1)-dimensional PDE is

U = g0(t, x) + ϕ(ω)g1(t, x) (5)

where ϕ(ω) is new unknown function, ω = ω(t, x) is the invariant variable,
and g0(t, x) and g1(t, x) are the known functions. Solving ODE for ϕ(ω), one
constructs exact solutions for PDE in question. The most common particular
case is g0 = 0, g1 = 1 and ω = x − Ct leading to the traveling fronts (TF).
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Definitions of Q-conditional symmetry for reaction-diffusion systems

Consider a system of m evolution equations (m ≥ 2) with 2 independent (t, x)
and m dependent u = (u1, u2, . . . , um) variables. Let us assume that the k-th
order (k ≥ 2) equations of evolution type

u
i
t = F

i
(

t, x, u, ux, . . . , u
(ki)
x

)

, i = 1, 2, . . . , m, (6)

are defined on a domain Ω ⊂ R
2 of independent variables t and x.

It is well-known that to find Lie invariance operators, i.e. Lie symmetry, one
needs to consider system (6) as the manifold

M = {S1 = 0, S2 = 0, . . . , Sm = 0}

where

Si ≡ u
i
t − F

i
(

t, x, u, ux, . . . , u
(ki)
x

)

= 0, i = 1, 2, . . . , m, (7)

in the prolonged space of the variables:

t, x, u, u
1
, . . . , u

k
,

where k = max{ki, i = 1, . . . , m}
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Definitions of Q-conditional symmetry for evolution systems

Definition

1. System (6) is invariant ( in Lie sense ) under the transformations generated
by the infinitesimal operator, i.e. Lie symmetry

Q = ξ0(t, x, u)∂t + ξ1(t, x, u)∂x+

+η1(t, x, u)∂u1 + . . . + ηm(t, x, u)∂um ,
(8)

if the following invariance conditions are satisfied:

Q
k
Si ≡ Q

k

(

u
i
t − F

i
(

t, x, u, ux, . . . , u
(ki)
x

))
∣

∣

∣

M
= 0, i = 1, 2, . . . , m (9)

Here the operator

Q
k

= Q
k−1

+ σ
k1

∂
u
(k)
1,x

+ . . . + σ
km

∂
u
(k)
m,x

, Q
0

= Q

is the k-th order prolongation of the operator Q and its coefficients are
expressed via the functions ξ0, ξ1, η1, . . . , ηm and their derivatives by the
well-known formulae.
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Definitions of Q-conditional symmetry for evolution systems

The crucial idea, which Bluman & Cole used for introducing the notion of
Q-conditional symmetry, is to change the manifold M, namely: the operator Q

is used to realize this. In [R.Ch.2010] it was noted that there are a few
possibilities to realize this idea in the case of PDE systems. As a result, a new
definition and the relevant algorithm how to simplify solving the problem
described above were proposed.

Definition

2.[R.Ch. 2010: J. Phys. A Math.Theor.] Operator (8) with ξ0 6= 0 is called the
Q-conditional symmetry of the first type for an evolution system of the form
(6) if the following invariance conditions are satisfied:

Q
k
Si ≡ Q

k

(

u
i
t − F

i
(

t, x, u, ux, . . . , u
(ki)
x

))
∣

∣

∣

M1

= 0 (10)

for all i = 1, 2, . . . , m, where the manifold

M1 = {S1 = 0, S2 = 0, . . . , Sm = 0, Q(ui1) = 0}

with a fixed number i1 (1 ≤ i1 ≤ m).
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Definitions of Q-conditional symmetry for evolution systems

Definition

3. Operator (8) is called the Q-conditional symmetry of the p-th type for an
evolution system of the form (6) if the following invariance conditions are
satisfied:

Q
k
Si ≡ Q

k

(

u
i
t − F

i
(

t, x, u, ux, . . . , u
(ki)
x

))
∣

∣

∣

Mp

= 0 (11)

for all i = 1, 2, . . . , m, where the manifold

Mp = {S1 = 0, S2 = 0, . . . , Sm = 0,

Q(ui1) = 0, . . . , Q(uip) = 0}
with a set of the given numbers i1, . . . , ip (1 ≤ p ≤ ip ≤ m).

Definition

4. Any Q-conditional symmetry of the m-th type is called the Q-conditional
symmetry (non-classical symmetry) for an evolution system of the form (6).

Remark. All three definitions coincide in the case of m = 1, i.e. a single
evolution equation.
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Definitions of Q-conditional symmetry for evolution systems

If m > 1 then one obtains a hierarchy of conditional symmetry operators. It is
easily seen that

Mm ⊂ Mp ⊂ M1 ⊂ M
It means that each Lie symmetry is automatically a Q-conditional symmetry of
the first, while Q-conditional symmetry of the first type is that of the m-th
type (non-classical symmetry).
From the formal point of view is enough to find all the Q-conditional symmetry
(non-classical symmetry) operators. On the other hand, to construct a
complete list of Q-conditional symmetries for a system of PDEs, one needs to
solve another nonlinear system, which usually is much more complicated and
cumbersome. This problem arises even in the case of single linear PDE and it
was the reason why G.Bluman and J.Cole in their pioneering work [ J. Math.
Mech.,1969] were unable to describe all Q-conditional symmetries in explicit
form even for the linear heat equation (it was done much later by other
authors).
Thus, all three definitions are important from theoretical and practical point of
view.
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Exact solutions of two-component Lotka-Volterra system and their biological

interpretation

In the case m = 2, the DLV system (2) produces the two-component that

λ1ut = uxx + u(a1 + b1u + c1v),
λ2vt = vxx + v(a2 + b2u + c2v),

(12)

which is the most common particular case and was intensively studied starting
from 1970s [Conway & Smoller,1977; Hastings, 1978] by different techniques.
In particular, Rodrigo & Mimura [Hiroshima Math.J.2000] were able to
construct the first examples of TFs for (12). Later new TFs were constructed
in [R. Ch.& V.Dutka, 2004],[LC Hung, 2011, 2012],[CC Chen et al, 2012], [CC
Chen & LC Hung, 2016]. An example from [R. Ch.& V.Dutka, 2004]:

u = a
4b

[

1 − tanh
( √

a

2
√

6

(

x − 5
√

a√
6

t + x0

))]2

v = β0 + β1a

4b

[

1 − tanh
( √

a

2
√

6

(

x − 5
√

a√
6

t + x0

))]2

,
(13)

where all the parameters are defined by the parameters ak, bk, ck from (12).
Here we are looking for exact solutions of the DLV system with more
complicated structure.
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Exact solutions of two-component Lotka-Volterra system and their biological

interpretation

Lie symmetry of the DLV system (12) is poor. As it follows from [R.Ch.&
J.R.King,2000,2003] as a particular case, in order to admit a non-trivial Lie
symmetry, several parameters among ak, bk, ck must vanish. As a result, (12)
reduces to an unrealistic model.
Thus, one needs to look for conditional symmetries of the DLV system in order
to find new exact solutions.

Theorem

In the case λ1 6= λ2, DLV system (12) is Q-conditionally invariant under
operator

Q = ξ
0(t, x, u, v)∂t+ξ

1(t, x, u, v)∂x+η
1(t, x, u, v)∂u+η

2(t, x, u, v)∂v, ξ
0 6= 0
(14)

if and only if b1 = b2 = b, c1 = c2 = c.

In the case λ1 = λ2, DLV system (12) admits only such operators of the form
(14), which are equivalent to the Lie symmetry operators.

Roman Cherniha Symmetries and exact solutions of the diffusive Lotka-Volterra system



Conditional symmetries of the two-component Lotka-Volterra system

Theorem

In the case λ1 6= λ2, DLV system (12) is invariant under Q-conditional
operators of the first type only in two cases. The corresponding systems and
Q-conditional symmetries (up to local transformations
u → bu, v → exp( a2

λ2
t)v, b 6= 0 and u → exp( a1

λ1
t)v, cv → u, c 6= 0 ) have

the forms

(i)
λ1ut = uxx + u(a1 + u + v),
λ2vt = vxx + v(a2 + u + v), a1 6= a2,

(15)

Q1 = (λ1 − λ2)∂t + (a1 − a2)u(∂u − ∂v), (16)

Q2 = (λ1 − λ2)∂t − (a1 − a2)v(∂u − ∂v). (17)

(ii)
λ1ut = uxx + u(a1 + u),
λ2vt = vxx + vu,

(18)

Q = ∂t + 2α1
λ1−λ2

∂x +
(

exp(α1x +
α2

1
λ2

t)×
(

(α3 + α4 exp(− a1
λ2

t))u + α3a1

)

+ α2v
)

∂v,
(19)

where αk, k = 1, . . . , 4 are arbitrary constants with the restriction
α2

3 + α2
4 6= 0. There are no any other Q-conditional operators of the first type.
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Exact solutions of Lotka-Volterra system and their biological interpretation

Let’s apply the conditional symmetries obtained for constructing exact
solutions. According to the theorem presented above, system (15)

λ1ut = uxx + u(a1 + u + v),
λ2vt = vxx + v(a2 + u + v), a1 6= a2,

admits two operators of conditional symmetry. Consider, say, the second one:

Q2 = (λ1 − λ2)∂t − (a1 − a2)v(∂u − ∂v).

Using the standard procedure one obtains the relevant ansatz

u(t, x) = ϕ1(x) − ϕ2(x) exp( a1−a2
λ1−λ2

t),

v(t, x) = ϕ2(x) exp( a1−a2
λ1−λ2

t)

reducing (15) to the nonlinear ODE system

ϕ′′
1 + ϕ2

1 + a1ϕ1 = 0,

ϕ′′
2 + a2λ1−a1λ2

λ1−λ2
ϕ2 + ϕ1ϕ2 = 0

Because the first equation can be solved separately we were able to construct
several particular solutions of this reduced system and each of them produces
exact solution of the two-component DLV system (15). Let me present one of
them only (see [R.Ch.& V.Davydovych, 2011] for more solutions).
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Exact solutions of Lotka-Volterra system and their biological interpretation

Obviously, system (15) can be rewritten in the form ( u → bU, v → cV )

λ1Ut = Uxx + U(a1 − bU − cV ),
λ2Vt = Vxx + V (a2 − bU − cV ),

(20)

System (20) is used to describe the competition (e.g., for food) of two species.

Theorem

The classical solution of boundary-value problem for the competition system
(20) and the initial profile

U(0, x) = a1
b

+ 1
(a1−a2)b

C2 sin(
√
−βλ1x),

V (0, x) = 1
(a2−a1)c

C2 sin(
√
−βλ1x),

(21)

and boundary conditions

x = 0 : U = a1
b

, V = 0,

x = π√
−βλ1

: U = a1
b

, V = 0,
(22)

in domain Ω = {(t, x) ∈ (0, +∞) ×
(

0, π√
−βλ1

)

} is given by formulae (23).
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Exact solutions of Lotka-Volterra system and their biological interpretation

U(t, x) = a1
b

+ 1
(a1−a2)b

C2 sin(
√

βλ1x)e−βt,

V (t, x) = 1
(a2−a1)c

C2 sin(
√

βλ1x)e−βt,
(23)

where β = a2−a1
λ1−λ2

> 0, a1 > 0, a2 > 0.

The solution (23) with β < 0 has the time asymptotic

(U, V ) → (
a1

b
, 0), t → +∞. (24)

Thus, this solution describes the competition between the two species when
the species U eventually dominate while the species V die.
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Exact solutions of Lotka-Volterra system and their biological interpretation

Figure: Solution (23) of system (20) with
a1 = 1, a2 = 2, λ1 = 11, λ2 = 1, b = 0.1, c = 0.1, C2 = 0.2, β = − 0.1.
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Construction of exact solutions of the DLVS in ’no-go case’

The DLV system consists of evolution equations, hence the so-called no-go case
arises when one constructs Q-conditional (non-classical) symmetries. So, one
should look for the operators of the form (8) with ξ0 = 0, i.e.

Q = ξ
1(t, x, u)∂x + +η

1(t, x, u)∂u1 + . . . + η
m(t, x, u)∂um , (25)

Very recently this case was studied in [R.Ch. & V. Davydovych, 2021, 2022].
It is well-known [Zhdanov & Lahno, Physica D, 1998] that application of the
standard definition of Q-conditional symmetry leads to a complicated system
and its solving is equivalent to solving the evolution PDE in question.

Definition

Operator (25) is called Q-conditional symmetry of the first type for the
m-component DLV system (2) if the following invariance criterion is satisfied:

Q
2

(Si)
∣

∣

∣

Mj
1

= 0, i = 1, 2, . . . , m, (26)

where j is a fixed number and

Mj
1 = {S1 = 0, S2 = 0, . . . , Sm = 0, Q(uj) = 0, ∂

∂t
Q(uj) = 0, ∂

∂x
Q(uj) = 0},

Si = ui
t − diu

i
xx + ui

(

ai +
m
∑

j=1

biju
j

)

.

(27)
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Construction of exact solutions of the DLVS in ’no-go case’

Theorem

The DLV system (12)

λ1ut = uxx + u(a1 + b1u + c1v),
λ2vt = vxx + v(a2 + b2u + c2v),

is invariant under Q-conditional symmetry operator(s) of the first type in the
no-go case

Q = ξ(t, x, u, v)∂x + η
1(t, x, u, v)∂u + η

2(t, x, u, v)∂v, ξ 6= 0,

if and only if the system and the relevant operator(s) are as specified in
Table 1. Any other DLV system (12) admitting a Q-conditional symmetry of
the first type and the corresponding operator(s) are reducible to those listed in
Table 1 by an appropriate transformation from the set

t
∗ = t + t0, x

∗ = e
γ0(x + x0), u

∗ = β11 e
γ1t

u + β12 v, v
∗ = β22 e

γ2t
v + β21 u,

where t0, x0, βij and γj are correctly-specified constants.
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Construction of exact solutions of the DLVS in ’no-go case’

Table: Q-conditional symmetries of the first type of the DLV system (12)

Reaction terms in (12) Restrictions Operators

1 u(a1 + u + v) λ1 6= λ2 Qu
1 = ∂x +

g1
x

g1 u (∂u − ∂v),

v(a2 + λ2
λ1

u + λ2
λ1

v) Qv
1 = ∂x +

g2
x

g2 v (∂v − ∂u)

2 u(a + u + 2v) λ1 = 1 Qv
2 = G(x, v) (∂x + F (x, v)(∂u − ∂v))

v(a + v)

3 uv a2c2 6= 0 Qu
3 = ∂x + r(t, x) u ∂u,

v(a2 + c2v) λ1 = 1 Qv
3 =

(

h1(ω) − 2th2(ω)
)

∂x

+
(

(h2(ω)x + h3(ω))u + p(t, x, v)
)

∂u

4 uv c2 6= 0 Qu
3 , Qv

4 =
(

h1(θ) − 2th2(θ)
)

∂x

c2v2 λ1 = 1 +
(

(h2(θ)x + h3(θ))u + p(t, x, v)
)

∂u
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Construction of exact solutions of the DLVS in ’no-go case’

Table: Continuation: Q-conditional symmetries of the first type of the DLV system
(12) with λ1 = λ2 = 1

Reaction terms in (12) Restrictions Operators

5 uv a2 6= 0 Qu
3 , Qv

3 , Qv
5 = ∂x + ea2tu∂v

v
(

a2 + v
2

)

+
(

α u − e−a2t

2
v2 − a2e−a2tv

)

∂u

6 uv Qu
3 , Qv

4 ,
1
2

v2 Qv
6 = (α1t + α0)∂x + (α1t + α0)u∂v

+
(

(

α2 − α1
2

x
)

u − α1t+α0
2

v2 − α1v
)

∂u

7 uv a2 6= 0 α2
1 + α2

2 6= 0, Qu
3 , Qv

3 ,

v(a2 + v) Qu
7 = ∂x +

(

− x
2t

u + α1
t

+
(

α2e−a2t

t
+ α1

a2t

)

v
)

∂u

8 uv α2
1 + α2

2 6= 0 Qu
3 , Qv

4 ,

v2 Qu
8 = ∂x +

(

− x
2t

u + α1
t

+
(α2

t
+ α1

)

v
)

∂u
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Construction of exact solutions of the DLVS in ’no-go case’

In Table:
ω = a2+c2v

λv
e

a2
λ

t, θ = t + λ
c2v

;

h1, h2 and h3 are arbitrary smooth functions,
function p(t, x, v) is the general solution of the linear ODE

pt = pxx − v(a2 + c2v)

λ
pv + vp,

the functions F and G form the general solution of the system

FFv − Fx + av + v
2 = 0, Gx = FGv,

the function r(t, x) is the general solution of the Burgers equation

rt = rxx + 2rrx,

g
i(t, x) =























α0 exp
(

κ2t
λi

)

+ α1 sin(κ x) + α2 cos(κ x), if λ1a2−λ2a1
λ1−λ2

> 0,

α0 exp
(

−κ2t
λi

)

+ α1e
κx + α2e

−κx, if λ1a2−λ2a1
λ1−λ2

< 0,

α0 + α1x + α2λix
2 + 2α2t, if λ1a2 = λ2a1,

(28)

where i = 1, 2, κ =

√

∣

∣

∣

λ1a2−λ2a1
λ1−λ2

∣

∣

∣
, α0, α1 and α2 are arbitrary constants.
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Construction of exact solutions of the DLVS in ’no-go case’

The DLV system with positive parameters

λ1ut = uxx + u(a1 − b u − c v),

λ2vt = vxx + v(a2 − λ2b

λ1
u − λ2c

λ1
v).

(29)

is applicable for describing the competition of two population of species.
A four-parameter family of exact solutions obtained via Q-conditional
symmetry reads as

u(t, x) =
a1 exp(

a1
λ1

t)

C1+α0b exp(
a1
λ1

t)+C2λ2 exp(
a2
λ2

t)

×
(

α0 + α1 exp(λ2a1−λ1a2
λ1(λ1−λ2)

t) sin
(√

λ1a2−λ2a1
λ1−λ2

x
))

,

v(t, x) = 1
c

α0a1b exp(
a1
λ1

t)+C2a2λ1 exp(
a2
λ2

t)

C1+α0b exp(
a1
λ1

t)+C2λ2 exp(
a2
λ2

t)
− b

c
u(t, x).

(30)
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