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Conservation laws and symmetries that depend on arbitrary functions

Symmetries and conservation laws

Generalized symmetries of a system of PDEs

Consider an involutive system of PDEs, A = 0, with components

A`(x, [u]) = 0, ` = 1, . . . , L;

independent variables are x = (x1, . . . , xp),

dependent variables are u = (u1, . . . , uq),

[u] denotes u and finitely many derivatives uαJ .

Assumption: All functions of (x, [u]) are analytic (locally).

The total derivative with respect to x i is

Di =
∂

∂x i
+ u βi

∂

∂u β
+ u βji

∂

∂u βj
+ · · · .

Multi-index notation: for J = (j1, . . . , jp), let DJ = D j1

1 · · ·D
jp
p .
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Symmetries and conservation laws

The (infinitely prolonged) vector field

X = Q α ∂

∂u α
+ (DiQ

α)
∂

∂u αi
+ · · · = (DJQ

α)
∂

∂u αJ

generates generalized symmetries if the LSC holds:

XA` = 0 when [A = 0], ` = 1, . . . , L.

Square brackets denote the enclosed expression and its derivatives.
The (symmetry) characteristic is Q = (Q1(x, [u]), . . . ,Qq(x, [u])).

The LSC is linear homogeneous in Q; for some PDEs, it has
solutions that are linear homogeneous in one or more arbitrary
functions gr (x), perhaps subject to linear differential constraints,

Ksr (gr ) = 0, s = 1, . . . ,S .
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Symmetries and conservation laws

Running example

Various applications generate a pseudoparabolic conservation law
of the following form, for given functions M and Ψ:

A := ut − Dx{M(u)DxDt(Ψ(u))} = 0. (1)

This admits symmetries with characteristic Q = g(t)ut ; here, g is
arbitrary subject to Dxg = 0.

Reduction of order: Write (8) in terms of the differential
invariants x , u, p = ux and simplify to get

Dx

{
M(u)Du(pΨ′(u))

}
+ Du

{
pM(u)Du(pΨ′(u))− u

}
= 0.

Reduction of order for PDEs may occur for Lie pseudogroups; the
details of the group foliation are critical (Ovsiannikov, Thompson
& Valiquette, Kruglikov, Schneider).
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Symmetries and conservation laws

Conservation laws

A conservation law (CLaw) for A = 0 is a divergence expression,
C = DiF

i , that vanishes on solutions of the PDE:

C = 0 when [A = 0]. (2)

A CLaw is trivial whenever it is the sum of:

1 a CLaw whose components F i vanish when A = 0,

2 a CLaw that holds identically, whether or not A = 0.

Two CLaws are equivalent if they differ by a trivial CLaw.

Each CLaw, C, has an equivalent characteristic form:

C̃ := Q`A` = Div(F̃).

The function Q is the characteristic (or multiplier) for C̃.
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From variational symmetries to conservation laws

Lie pseudogroups of variational symmetries are reflected in
conservation laws of Euler–Lagrange (E–L) equations,

Aα = Euα(L(x, [u]) := (−D)J

∂L

∂u αJ
= 0.

Variational symmetries satisfy the condition

XL := (DJQ
α)

∂L

∂u αJ
= DiP

i . (3)

Integrate by parts to get a conservation law in characteristic form:

QαAα := Qα (−D)J

∂L

∂u αJ
= Di P̃

i . (4)

The correspondence between (3) and (4) gives

Noether’s (First) Theorem

Q is a characteristic of a variational symmetry generator if and
only if it is a characteristic of a CLaw for the E–L equations.
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From variational symmetries to conservation laws

“Noether 1.5” (H. and Mansfield)

Theorem Suppose that a characteristic of variational symmetry
generators is linear homogeneous in R independent functions gr (x)
that are subject to a complete set of linear differential constraints,

Ksr (gr ) = 0, s = 1, . . . ,S .

Then the E–L equations Aα := Euα(L) = 0 satisfy the identities

Egr
{
Qα
(
x, [u; g]

)
Aα
}

= (Ksr )†(µs), r = 1, . . . ,R. (5)

If there are differential relations (syzygies) between the E–L
equations, these are obtained by eliminating µs from (5).

The identities (5) give families of conservation laws corresponding
to Noether’s (First) Theorem:

C̃ = µsKsr (gr )− gr (Ksr )†(µs).
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From variational symmetries to conservation laws

Example For M = Ψ′, set u = wx in (8) to get an E–L equation,

A := wxt − Dx{Ψ′(wx)DxDt(Ψ(wx))} = 0. (6)

This has variational symmetries with Q = g1(t)wt + g2(t); again,
regard each gr as arbitrary subject to Dxg

r = 0.

The Noether 1.5 identities (5) are wtA = −Dxµ
1, A = −Dxµ

2,
whose solutions are the first integrals

µ1 = 1
2{Dt(Ψ(wx))}2 − 1

2w
2
t , µ2 = Ψ(wx)DxDt(Ψ(wx))− wt .

Eliminate wt and use the symmetries to get a reduced PDE for u:

{Dt(Ψ(u))}2 − {Ψ(u)DxDt(Ψ(u))}2 = sgn(c), c ∈ R.

For c = 0, there is a symmetry reduction to an ODE for p(x , u):

Du{pΨ′(u)± ln |Ψ(u)|} = 0.
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From variational symmetries to conservation laws

Example: Area-preserving variational symmetries

If Q depends on g1(x , y), g2(x , y), subject to g1x + g2y = 0, the
conservation laws and differential relations come from

Eg1{QαAα} = −Dxµ, Eg2{QαAα} = −Dyµ.

Eliminating µ gives a single differential relation:

−Dy

(
Eg1{QαAα}

)
+ Dx

(
Eg2{QαAα}

)
= 0.

This result doesn’t depend on the details of the system A.

Notes

1 Noether 1.5 bridges the gap between Noether’s Theorems.
2 Generally, the conservation laws from Noether 1.5 are not in

characteristic form.
3 If g is arbitrary in p− 1 independent variables, the Noether 1.5

conservation laws are first integrals (cf Popovych & Bihlo).
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Extension to non-variational PDEs

Extension to non-variational PDEs

Noether 1.5 extends naturally to arbitrary PDE systems, Aα = 0:

simply use Qα in place of Qα.

Theorem Let C be a conservation law in characteristic form, where
Q is linearly homogeneous in R independent functions gr (x) that
are subject to a complete set of linear differential constraints,

Ksr (gr ) = 0, s = 1, . . . ,S .

If there are differential relations between the components Aα,
these are obtained by eliminating µs from the identities

Egr
{
Qα
(
x, [u; g]

)
Aα
}

= (Ksr )†(µs), r = 1, . . . ,R. (7)

Then (7) yields families of CLaws,

C̃ = µsKsr (gr )− gr (Ksr )†(µs).
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Extension to non-variational PDEs

Example The pseudoparabolic PDE

A := ut − Dx{exp(−Ψ(u))DxDt(Ψ(u))} = 0, (8)

has a CLaw characteristic Q = g exp(Ψ(u)), subject to Dtg = 0.

The identity (7) amounts to

exp(Ψ(u))A = −Dtµ,

so µ is a first integral. It yields the reduced equation

D2
x (Ψ(u))− 1

2{Dx(Ψ(u))}2 −
∫

Ψ(u)du = f (x)

(a parametrized ODE).
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Conservation laws and symmetries that depend on arbitrary functions

Extension to non-variational PDEs

Example (2-D Euler equations)

The 2-D Euler equations (with unit density) are Aα = 0, where

A1 = ut+uux+vuy+px , A2 = vt+uvx+vvy+py , A3 = ux+uy .

This system has the following CLaw in characteristic form:

C = g1A1 + g2A2 + (g1u + g2v − g1t x − g2t y + g3)A3,

where each gr is a function of t only. Explicitly, C is unilluminating:

C = Dt{g1u + g2v}+ Dx{(g1u + g2v − g1t x − g2t y + g3)u + g1p}
+ Dy{(g1u + g2v − g1t x − g2t y + g3)v + g2p}.

Applying the theorem gives something more meaningful:

A1 + (u + xDt)A3 = −Dxµ
1 − Dyµ

2 (and similarly for A2)

→ C̃ = Dx{xut + u2 + p}+ Dy{xvt + uv} (force balance).
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Questions?
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