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Congratulations to Peter Olver

On the occasion of his 70th birthday
and his contributions to useful and beautiful mathematics
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Accelerated Optimization

∎ Accelerated Optimization

● Consider the optimization problem minx∈X f(x), where X ⊂
Rn is a convex domain and f ∶ X → R is a continuously differen-
tiable convex function, with a unique minimizer x∗ ∈X .

● Nesterov1 introduced the accelerated gradient method,

xk = yk−1 − s∇f(yk−1), yk = xk +
k − 1
k + 2(xk − xk−1),

which for any fixed step size s ≤ 1/L, where L is the Lipschitz
constant of ∇f , converges at

f(xk) − f(x∗) ≤ O (
∥x0 − x∗∥2

sk2
) .

1Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.
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Accelerated Optimization

∎ Accelerated Optimization

● Nesterov2 proved that O(1/k2) is optimal for methods that only
use information about the gradient of f at consecutive iterates, and
vanilla gradient descent methods only achieve O(1/k).
● Su, Boyd, and Candès3 proved that the Nesterov scheme has a
continuous limit given by,

X ′′ + 3
t
X ′ +∇f(X) = 0,

with initial conditions X(0) = x0, X ′(0) = 0. The time parameter
in the ODE is related to the step size s via t ≈ k√s.

2Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston,
MA, 2004.

3W. Su, S. Boyd, E. J. Candès, A Differential Equation for modeling Nesterov’s Accelerated Gradient Method: Theory and Insights, Journal of Machine
Learning Research, 17(153), 1–43, 2016.
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Variational Accelerated Optimization

∎ Bregman Lagrangian4

● The Bregman Lagrangian is given by,

L(x, v, t) = eα(t)+γ(t)(Dh(x + e−α(t)v, x) − eβ(t)f(x)),
and the Bregman Hamiltonian is given by

H(x, p, t) = eα(t)+γ(t)(Dh∗(∇h(x)+e−γ(t)p,∇h(x))+eβ(t)f(x)),
where h ∶ X → R is convex, h∗ is its convex dual, and Dh is the
Bregman divergence,

Dh(y, x) = h(y) − h(x) − ⟨∇h(x), y − x⟩.

4A. Wibisono, A. Wilson, M. I. Jordan, A variational perspective on accelerated methods in optimization, Proceedings of the National Academy of Sciences,
133, E7351–E7358, 2016.
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Variational Accelerated Optimization

∎ Convergence rates of Euler–Lagrange flow

● Under the growth conditions β̇ ≤ eα, γ̇ = eα, the solutions of the
associated Euler–Lagrange equations exhibit the following conver-
gence property,

f(x(t)) − f(x∗) ≤ O(e−β(t)),
which was shown using a Lyapunov function approach.

● In particular, for p > 0, if we choose α(t) = log p − log t, β(t) =
p log t + logC, γ(t) = p log t, where C > 0, then the growth condi-
tion above is satisfied, and the Euler–Lagrange flow converges to
the optimal value in O(1/tp).



7

Discrete Mechanics and Accelerated Optimization

∎ Variational Discretization5

● Due to the scaling terms α(t), β(t), γ(t) in the Bregman La-
grangian and Hamiltonian, they are time-dependent.

● Näıvely applying symplectic and variational integrators to such
time-dependent systems often yield poor numerical results.

● Given a Hamiltonian, H(q, p), and a desired transformation of

time, t ↦ τ , given by dt
dτ = g(q, p), a new Hamiltonian system is

given by the Poincaré transformation6,

H̄(q̄, p̄) = g(q, p) (H(q, p) + pt) ,

where (q̄, p̄) = ([ q
qt
] , [ p

pt
]).

5V. Duruisseaux, J. Schmitt, M. Leok, Adaptive Hamiltonian Variational Integrators and Symplectic Accelerated Optimization, SIAM Journal of Scientific
Computing, 43(4), A2949-A2980 (32 pages), 2021.

6E. Hairer, Variable time step integration with symplectic methods, Applied Numerical Mathematics, 25, 219–227, 1997.
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Discrete Mechanics and Accelerated Optimization

∎ Variational Discretization

●We let qt = t and pt = −H(q(0), p(0)). Then, H̄(q̄, p̄) = 0 along
all integral curves through (q(0), p(0)).
● The corresponding Hamilton’s equations are given by,

˙̄q = [∇pg(q, p)
0

] (H(q, p) + pt) + [
∂H
∂p
1
] g(q, p),

˙̄p = −[∇qg(q, p)
0

] (H(q, p) + pt) − [
∂H
∂q
0
] g(q, p).

●With initial conditions (q(0), p(0)), H(q, p) + pt = 0 and

˙̄q = [g(q, p)
∂H
∂p

g(q, p)
] , ˙̄p = [−g(q, p)

∂H
∂q

0
] .
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Discrete Mechanics and Accelerated Optimization

∎ Variational Discretization

● In general, we obtain a degenerate Hamiltonian, since

∂2H̄

∂p̄2
=
⎡⎢⎢⎢⎢⎣

∂H
∂p∇pg(q, p)T + g(q, p)

∂2H
∂p2
+∇pg(q, p)∂H∂p

T ∇pg(q, p)
∇pg(q, p)T 0

⎤⎥⎥⎥⎥⎦
.

● Going to extended phase space, corresponds to g ≡ 1, which yields
a degenerate Hamiltonian for which no Lagrangian analogue exists.

● This necessitates the use of Hamiltonian variational integrators.
The variational error analysis result holds so long as

det(∂H
∂p
∇pg(q, p)T + g(q, p)

∂2H

∂p2
+∇pg(q, p)

∂H

∂p

T

) ≠ 0.

In particular, this holds for non-degenerate Hamiltonians H , and
p-independent monitor functions.
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Exact Discrete Hamiltonian

∎ Sketch of Approach7

● The exact discrete Lagrangian is a Type I generating function,

Lexact
d (q0, q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫
h

0
L(q(t), q̇(t))dt,

expressed in terms of a continuous Lagrangian.

● Use the continuous Legendre transformation to obtain,

L(q, q̇) = pq̇ −H(q, p).

7ML, J. Zhang, Discrete Hamiltonian Variational Integrators, IMA Journal of Numerical Analysis, 31(4), 1497–1532, 2011.
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Exact Discrete Hamiltonian

∎ Sketch of Approach

● Use the discrete Legendre transformation,

Ld(qk, qk+1) //

��

H+
d
(qk, pk+1)

��

H−
d
(pk, qk+1) //Rd(pk, pk+1)

to obtain a Type II generating function,

H+d,exact(qk, pk+1) =

ext
(q,p)∈C2([tk,tk+1],T ∗Q)
q(tk)=qk,p(tk+1)=pk+1

p(tk+1)q(tk+1) − ∫
tk+1

tk
[pq̇ −H(q, p)]dt.

● Discretize using an approximation space for Q (not T∗Q) and a
quadrature rule. Equivalent to Lagrangian variational integrator.
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Accelerated Optimization using Adaptive Variational Integrators

∎ Transformations of the Bregman Hamiltonian

● Use adaptivity to transform the time-dependent Bregman Hamil-
tonian corresponding to p > 0 into an autonomous Hamiltonian
corresponding to a smaller p̊ < p in extended phase-space.

● Integrate higher-order p-Bregman dynamics with the computa-
tional efficiency of integrating lower-order p̊-Bregman dynamics.

● The desired monitor function is given by
dt

dτ
= g(q, t, r) = p

p̊
t1−p̊/p,

and generates the Poincaré transformed Hamiltonian

H̄(q̄, r̄) = 1
p̊

⎡⎢⎢⎢⎢⎢⎣

p2

2(qt)p+
p̊
p

⟨r, r⟩ +Cp2(qt)2p−
p̊
pf(q) + prt(qt)1−

p̊
p

⎤⎥⎥⎥⎥⎥⎦
.
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Accelerated Optimization using Adaptive Variational Integrators

∎ Adaptive versus Direct approach
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Accelerated Optimization using Adaptive Variational Integrators

∎ Comparison to non-symplectic adaptive RK method
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Accelerated Optimization using Adaptive Variational Integrators

∎ Comparison to Nesterov’s Accelerated Gradient (NAG)
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Accelerated Optimization on Riemannian Manifolds8

∎ Convex and Weakly-Quasi-Convex Case

Lα,β,γ(X,V, t) = 1
2
eλ
−1ζγt−αt⟨V,V ⟩ − eαt+βt+λ−1ζγtf(X)

Hα,β,γ(X,R, t) = 1
2
eαt−λ

−1ζγt⟪R,R⟫ + eαt+βt+λ−1ζγtf(X)

f(X(t)) − f(x∗) ≤
2λ2eβ0 (f(x0) − f(x∗)) + ζ∥Logx0(x∗)∥2

2λ2eβt
= O(e−βt)

∎ Strongly Convex Case

LSC(X,V, t) = e
ηt

2
⟨V,V ⟩ − eηtf(X)

HSC(X,R, t) = e
−ηt

2
⟪R,R⟫ + eηtf(X)

f(X(t)) − f(x∗) ≤
µ∥Logx0(x∗)∥2 + 2 (f(x0) − f(x∗))

2e
√

µ
ζ t

8V. Duruisseaux, M. Leok, A Variational Formulation of Accelerated Optimization on Riemannian Manifolds, SIAM Journal on Mathematics of Data
Science, 4(2), 649-674, 2022.
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Accelerated Optimization on Riemannian Manifolds

∎ Generalized Eigenvector Problem

f ∶ St(m,n) → R
X ↦ f(X) = Tr(X⊺AXN)

∎ Unbalanced Orthogonal Procrustes Problem
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Accelerated Optimization on Lie Groups9

∎ Camera Pose Estimation Problem

9T. Lee, M. Tao, M. Leok, Variational Symplectic Accelerated Optimization on Lie Groups, Proc. IEEE Conf. Decision and Control, 233–240, 2021.
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Summary and Future Directions

● Accelerated optimization algorithms can be viewed as discretiza-
tions of continuous-time flows that converge to the minimizer.

● One such class of flows are described by Bregman Lagrangian and
Hamiltonian dynamics, which are time-dependent symplectic flows.

● Geometric discretization of these flows requires the use of time-
adaptive Hamiltonian variational integrators.

● The problem of accelerated optimization on Riemannian manifolds
and Lie groups motivates the development of time-adaptive Hamil-
tonian variational integrators on nonlinear manifolds.

● This requires the development of discrete Hamiltonian mechanics
based on a discrete generalized energy, instead of a Type II/Type
III generating function.
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