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Outline of the talk

e Curve shortening flow (CSF)
e Soliton solutions on the sphere.

e Soliton solutions on the hyperbolic space.

Definition A family of curves X! : I — (M2, g), t € [0,T), is said to

be a solution to the Curve Shortening Flow (CSF) with a given
initial condition X : I — M?, if

9 X1() = MON'C)

ot ;
X0() = X(),
k'(-) is the geodesic curvature, N'(-) unit normal vector field

The geodesics are trivial solutions.



e Epstein-Gage (1987) showed that when M? = R?, the CSF is

geometrically the same for
—X*) = k'(-)N'(-) + tangential components
4
one can define the CSF to satisfy <%Xt(-),]§ft(-)> = k().

e The name curve shortening flow is justified: when the curves

X' are closed, it is a gradient type of flow for the arc length

functional.

e When the flow evolves by isometries or homotheties then X (s)

is called a self-similar solution to the CSF.

@ The curve is a soliton if the flow evolves just by isometries.



e On R” the Grim Reaper: graph of f(s) = In(cos(s)) evolves by

translations. Giga (2006): unique such curve on RZ.
e The yin-yang spiral evolves by isometries of R,

e Abresch-Langer and Epstein-Weinstein investigated the closed

curves, not necessarily simple, that evolve by homotheties.

e In the 80s, Gage, Gage-Hamilton and finally Grayson closed
embedded curves evolve to circular curves and then they col-

lapse into a point at a finite time.
e Halldorsson (2012) described all self-similar solutions on R®.

e Angenent (1991): under some general conditions, the CSF
evolves in a sense into a self-similar flow, showing the impor-

tance of self-similar solutions.



e Halldorsson (2015) classified the self-similar solutions on the

Minkowski plane.

Soliton solutions to CSF on S’ H. dos Reis (2019)

Theorem X (s) a non-geodesic curve p.a.l. on S* C R? is a soliton

solution to the CSF

)
Jv € R*\ {0} such that (T(s),v) = k(s), where T'= X' and &« is the

geodesic curvature of X (w.l.o.g. v=oae, e=(0,0,1), a > 0).

0

The functions o = (X, e), 7= (T,e), v = (N, e) satisfy
o =7,
T =arv — «, with  o?(0) + 72(0) +v°(0) = 1.

V' = —ar?,



Theorem

e For any v € R\ {0}, there is a 2-parameter family of non trivial

soliton solutions to the CSF on the sphere, X(s) s € R.

e The two ends are asymptotic to the geodesic I" of S? orthogonal

to v.

o If 0 < ||v|| < 2, then X intersects ' at infinitely many points

o If |[v]| > 2, then X intersects I' at most on a finite number of
points. In this case, each end of X converges to [' without

self-intersections.
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Figure 1: |v| = 0.5 infinite intersection points with I’ Figure 2: |v| = 1 infinite intersection points
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Figure 3: |v| =2 Figure 4: |v| =3




Soliton solutions to the CSF on H-?
Fabio N. da Silva, (2022)

We consider H* C R}, with the Minkowski metric on Rj
(u,v) = —uv1 + U9 + UzV3.

e The CSF on H? is geometrically invariant if tangential compo-
nents are added to the right hand side of %Xt — kN,

o It is a gradient type of flow for the arc length functional on H".



X : I — H? C R} a regular curve parametrized by arc length s.
T(s) = X'(s) the tangent vector field,

N(s) = X(s) x T'(s) the unit normal vector field

k(s) = (T"(s), N(s)) the geodesic curvature of X.

A one parameter family of curves X :IxJ— His called a curve

shortening flow (CSF) with initial condition X, if

<%X§S,t), N(s,t)> = k(s, 1),

X(s,0) = X{(s),
where k'(-) = k(-,t) is the geodesic curvature

N'(-) = N(-,t) is the unit normal vector field of X'(-) = X(-,¢).



Solitons of the CSF on H?

Definition Let X : I x J — H? C R? be a solution to the CSF, with

initial condition X : I — H?. We say that X is a soliton solution
to the CSF if

X'(s)=M(t)X(s), forall telJ
where M(t) : H* — H? is a 1-parameter family of isometries, such

that M (0) = Id is the identity map.

An isometry of H” is an element of the Lie group O;(3) that

preserves H-.



Theorem. Let X : [ — H? be a regular curve parametrized by arc

length s € I. Then X is a soliton solution to the CSF

0

there is a vector v € R} \ {0} such that
(T(s),0) = k(s),  Wsel

where T'(s) is the unit tangent vector field and k(s) is the geodesic

curvature of X.

Remark w.l.o.g, up to isometries of H?,
wy = (1,0,0) ¢f v is timelike,
v is a multiple of ¢ wy = (1,1,0) f v is lightlike,
w3 = (0,0, —1) if v is spacelike.




Depending on the type of the vector v, the curvature is given by
ki(s) = (T(s),v;) where vi =aw;, a>0 ¢=123.

The curve X evolves as X;(s,t) = M;(t)X(s), where

10 0
Mi(t) .= [ O cos(at) sin(at) |,
0 —sin(at) cos(at)
1 +<a;)2 _(a;)2 at
M) = |l 1= ar |
at —at 1

cosh(at) sinh(at) 0
Ms(t) := | sinh(at) cosh(at) 0
0 0 1



System of ODEs

Proposition: A curve X : I — H?, parametrized by arc length s,
is a soliton solution to the |[CSF| i.e. Jv € R} \ {0}, such that

kis) = (T'(s),v), Vsel,

0

v =ae;, for a >0, @€ {1,2,3} and the functions «;(s) = (X (s),€;),
7i(s) = (T'(s),e;), mi(s)=(N(s),e;), satisfy the system of ODEs

a;(s) = 7i(s),

) =
7‘{(33 = a7;(s ) i(s) + a;(s),

ni(s) = —a7i(s),
with initial condition (a;(0),7;(0),7;(0)) satisfying
—1, if 1 =1,
—;(0) +77(0) + 77(0) =< 0, if i =2,

1, if i =3.



Relating solutions of the system to soliton curves

Proposition. Let (a(s),7(s),n(s)) be a solution to the system
a(s) = 7(s)
7'(s) = at(s)n(s) + a(s) a >0, fixed ,
n(s) = —ar’(s),

and initial conditions at s = 0, satisfying

—a?(0) 4+ 7(0) + n*(0) = —1 (resp. 0 and 1),

J
3 X :I— H”? p.a.l. s, such that & =ar, T and N satisfy

a(s) = (X(s),e), 7(s)=(T(s),e) and 75(s) = (N(s),e),

where ¢ = (—1,0,0) (resp. e=(—1,1,0) and e = (0,0, 1)).



X(s)

(c)
Figure 5: Geometric interpretation of the functions «(s), when e = (—1,0,0), e = (—1,1,0), e = (0,0, 1).



Investigating soliton curves to the CSF on H? is equivalent
to studying the solutions (s) = (a(s),7(s),n(s)) of the system of
ODEs, for each constant ¢« > 0, defined on a maximal interval

I = (w_,wy), with initial condition (0) € HUCUS C R’, where
H:={(a,7,n) €R’: —a* + 7> +1n*=—1,a > 0},
C:={(a,7,n) e R\ {0} : —a* + 712+ 1n*=0,a > 0},
S={(a,7,n) ER’: —a*+ 72 +n*=1}.

eParticular solutions: 7(s) =b € R constant < ¢(0) € S, I =R,

and b e {-1,0,1}, called trivial solutions. Moreover,

i) If b = 0, then ¢(s) = (0,0,£1) are singular solutions. They

correspond to geodesics on H?.

ii) If b* =1, then a = 1 and v(s) = (£s + a(0), £1, —s = a(0)). They

correspond to planar curves on H?.



Theorem.

e For any v € R} \ {0}, there is a 2-parameter family of non-

trivial (non constant curvature) soliton solutions to the CSF

on H-.

e There are three classes of soliton curves on H?, determined by

the type of the vector v.
e A series of lemmas inply that each soliton

— is defined on the whole real line;
— at each end, the curvature tends to a constant € {—1,0,1}.

—is an embedded curve on H?;



Visualizing some soliton solutions to the CSF on H*

O
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Figure 6: Soliton solution to the CSF on H? with fixed vector v = (—1,0,0) and a = 1.
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Figure 7: Soliton solution to the CSF on H? with fixed vector (—1,1,0) and a = 1.
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(a) (b)
Figure 8: Soliton solution to the CSF on H? with fixed vector (0,0,1) and a = 1.



Remark:

e Partial results on the H? were also obtained, independently,

by Woolgar-Xie.

e Fabio N. da Silva, - “Self-similar solutions to the cur-
vature flow and its inverse on the 2-dimensional light cone”

2022, just appeared on line.
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HAPPY BIRTHDAY PETER !!



