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Symmetry, invariants and their applications

A celebration of Peter Olver’s 70th Birthday,

Dalhousie University, Halifax, August 2022



Brasilia, May 2010



Outline of the talk

• Curve shortening flow (CSF)

• Soliton solutions on the sphere.

• Soliton solutions on the hyperbolic space.

Definition A family of curves X̂ t : I −→ (M 2, g), t ∈ [0, T ), is said to

be a solution to the Curve Shortening Flow (CSF) with a given

initial condition X : I −→M 2, if
∂

∂t
X̂ t(·) = k̂t(·)N̂ t(·)
X̂0(·) = X(·),

k̂t(·) is the geodesic curvature, N̂ t(·) unit normal vector field

The geodesics are trivial solutions.



• Epstein-Gage (1987) showed that when M 2 = R2, the CSF is

geometrically the same for

∂

∂t
X̂ t(·) = k̂t(·)N̂ t(·) + tangential components

⇓

one can define the CSF to satisfy
〈
∂
∂tX̂

t(·), N̂ t(·)
〉

= k̂t(·).

• The name curve shortening flow is justified: when the curves

X̂ t are closed, it is a gradient type of flow for the arc length

functional.

• When the flow evolves by isometries or homotheties then X(s)

is called a self-similar solution to the CSF.

• The curve is a soliton if the flow evolves just by isometries.



• On R2 the Grim Reaper: graph of f (s) = ln(cos(s)) evolves by

translations. Giga (2006): unique such curve on R2.

• The yin-yang spiral evolves by isometries of R2.

• Abresch-Langer and Epstein-Weinstein investigated the closed

curves, not necessarily simple, that evolve by homotheties.

• In the 80s, Gage, Gage-Hamilton and finally Grayson closed

embedded curves evolve to circular curves and then they col-

lapse into a point at a finite time.

• Halldorsson (2012) described all self-similar solutions on R2.

• Angenent (1991): under some general conditions, the CSF

evolves in a sense into a self-similar flow, showing the impor-

tance of self-similar solutions.



• Halldorsson (2015) classified the self-similar solutions on the

Minkowski plane.

Soliton solutions to CSF on S2 H. dos Reis (2019)

Theorem X(s) a non-geodesic curve p.a.l. on S2 ⊂ R3 is a soliton

solution to the CSF

m

∃ v ∈ R3 \ {0} such that 〈T (s), v〉 = κ(s), where T = X ′ and κ is the

geodesic curvature of X (w.l.o.g. v = ae, e = (0, 0, 1), a > 0).

m

The functions α = 〈X, e〉, τ = 〈T, e〉, ν = 〈N, e〉 satisfy α′ = τ,
τ ′ = aτν − α,
ν ′ = −aτ 2,

with α2(0) + τ 2(0) + ν2(0) = 1.



Theorem

• For any v ∈ R3\{0}, there is a 2-parameter family of non trivial

soliton solutions to the CSF on the sphere, X(s) s ∈ R.

• The two ends are asymptotic to the geodesic Γ of S2 orthogonal

to v.

• If 0 < ‖v‖ < 2, then X intersects Γ at infinitely many points

• If ‖v‖ ≥ 2, then X intersects Γ at most on a finite number of

points. In this case, each end of X converges to Γ without

self-intersections.



Figure 1: |v| = 0.5 infinite intersection points with Γ Figure 2: |v| = 1 infinite intersection points

Figure 3: |v| = 2 Figure 4: |v| = 3



Soliton solutions to the CSF on H2

Fábio N. da Silva, (2022)

We consider H2 ⊂ R3
1, with the Minkowski metric on R3

1

〈u, v〉 = −u1v1 + u2v2 + u3v3.

• The CSF on H2 is geometrically invariant if tangential compo-

nents are added to the right hand side of ∂
∂tX̂

t = k̂tN̂ t.

• It is a gradient type of flow for the arc length functional on H2.



X : I → H2 ⊂ R3
1 a regular curve parametrized by arc length s.

T (s) = X ′(s) the tangent vector field,

N(s) = X(s)× T (s) the unit normal vector field

k(s) = 〈T ′(s), N(s)〉 the geodesic curvature of X.

A one parameter family of curves X̂ : I×J → H2 is called a curve

shortening flow (CSF) with initial condition X, if
〈
∂

∂t
X̂(s, t), N̂(s, t)

〉
= k̂(s, t),

X̂(s, 0) = X(s),

where k̂t(·) = k̂(·, t) is the geodesic curvature

N̂ t(·) = N̂(·, t) is the unit normal vector field of X̂ t(·) = X̂(·, t).



Solitons of the CSF on H2

Definition Let X̂ : I×J → H2 ⊂ R3
1 be a solution to the CSF, with

initial condition X : I → H2. We say that X is a soliton solution

to the CSF if

X̂ t(s) = M(t)X(s), for all t ∈ J,

where M(t) : H2 → H2 is a 1-parameter family of isometries, such

that M(0) = Id is the identity map.

An isometry of H2 is an element of the Lie group O1(3) that

preserves H2.



Theorem. Let X : I → H2 be a regular curve parametrized by arc

length s ∈ I. Then X is a soliton solution to the CSF

m

there is a vector v ∈ R3
1 \ {0} such that

〈T (s), v〉 = k(s), ∀s ∈ I,

where T (s) is the unit tangent vector field and k(s) is the geodesic

curvature of X.

Remark w.l.o.g, up to isometries of H2,

v is a multiple of

 w1 = (1, 0, 0) if v is timelike,
w2 = (1, 1, 0) if v is lightlike,
w3 = (0, 0,−1) if v is spacelike.



Depending on the type of the vector v, the curvature is given by

ki(s) = 〈T (s), vi〉 where vi = awi, a > 0 i = 1, 2, 3.

The curve X evolves as X̂i(s, t) = Mi(t)X(s), where

M1(t) :=

 1 0 0
0 cos(at) sin(at)
0 − sin(at) cos(at)

 ,

M2(t) :=

 1 + (at)2

2 −(at)2

2 at
(at)2

2 1− (at)2

2 at
at −at 1

 ,

M3(t) :=

 cosh(at) sinh(at) 0
sinh(at) cosh(at) 0
0 0 1

 .



System of ODEs

Proposition: A curve X : I → H2, parametrized by arc length s,

is a soliton solution to the CSF i.e. ∃v ∈ R3
1 \ {0}, such that

k(s) = 〈T (s), v〉, ∀ s ∈ I,

m

v = aei, for a > 0, i ∈ {1, 2, 3} and the functions αi(s) = 〈X(s), ei〉,
τi(s) = 〈T (s), ei〉, ηi(s) = 〈N(s), ei〉, satisfy the system of ODEs α′i(s) = τi(s),

τ ′i(s) = aτi(s)ηi(s) + αi(s),
η′i(s) = −aτ 2

i (s),

with initial condition (αi(0), τi(0), ηi(0)) satisfying

−α2
i (0) + τ 2

i (0) + η2
i (0) =

 −1, if i = 1,
0, if i = 2,
1, if i = 3.



Relating solutions of the system to soliton curves

Proposition. Let (α(s), τ (s), η(s)) be a solution to the system α′(s) = τ (s)
τ ′(s) = aτ (s)η(s) + α(s) a > 0, fixed ,
η′(s) = −aτ 2(s),

and initial conditions at s = 0, satisfying

−α2(0) + τ 2(0) + η2(0) = −1 (resp. 0 and 1),

⇓

∃ X : I→ H2 p.a.l. s, such that k = aτ , T and N satisfy

α(s) = 〈X(s), e〉, τ (s) = 〈T (s), e〉 and η(s) = 〈N(s), e〉,

where e = (−1, 0, 0) (resp. e = (−1, 1, 0) and e = (0, 0, 1)).



(a) (b)

(c)

Figure 5: Geometric interpretation of the functions α(s), when e = (−1, 0, 0), e = (−1, 1, 0), e = (0, 0, 1).



Investigating soliton curves to the CSF on H2 is equivalent

to studying the solutions ψ(s) = (α(s), τ (s), η(s)) of the system of

ODEs, for each constant a > 0, defined on a maximal interval

I = (ω−, ω+), with initial condition ψ(0) ∈ H ∪ C ∪ S ⊂ R3, where

H := {(α, τ, η) ∈ R3 : −α2 + τ 2 + η2 = −1, α > 0},
C := {(α, τ, η) ∈ R3 \ {0} : −α2 + τ 2 + η2 = 0, α > 0},
S := {(α, τ, η) ∈ R3 : −α2 + τ 2 + η2 = 1}.

•Particular solutions: τ (s) = b ∈ R constant ⇔ ψ(0) ∈ S, I = R,

and b ∈ {−1,0,1}, called trivial solutions. Moreover,

i) If b = 0, then ψ(s) = (0, 0,±1) are singular solutions. They

correspond to geodesics on H2.

ii) If b2 = 1, then a = 1 and ψ(s) = (±s + α(0), ±1, −s± α(0)). They

correspond to planar curves on H2.



Theorem.

• For any v ∈ R3
1 \ {0}, there is a 2-parameter family of non-

trivial (non constant curvature) soliton solutions to the CSF

on H2.

• There are three classes of soliton curves on H2, determined by

the type of the vector v.

• A series of lemmas inply that each soliton

– is defined on the whole real line;

– at each end, the curvature tends to a constant ∈ {−1, 0, 1}.

– is an embedded curve on H2;



Visualizing some soliton solutions to the CSF on H2

(a) (b) (c)

Figure 6: Soliton solution to the CSF on H2 with fixed vector v = (−1, 0, 0) and a = 1.



(a) (b) (c)

Figure 7: Soliton solution to the CSF on H2 with fixed vector (−1, 1, 0) and a = 1.

(a) (b) (c)

Figure 8: Soliton solution to the CSF on H2 with fixed vector (0, 0, 1) and a = 1.



Remark:

• Partial results on the H2 were also obtained, independently,

by Woolgar-Xie.

• Fábio N. da Silva, - “Self-similar solutions to the cur-

vature flow and its inverse on the 2-dimensional light cone”

2022, just appeared on line.
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