On the self-similar solutions to the curvature flow for curves

Keti Tenenblat Universidade de Brasília

Symmetry, invariants and their applications A celebration of Peter Olver's 70th Birthday,

Dalhousie University, Halifax, August 2022

Brasilia, May 2010

Outline of the talk

- Curve shortening flow (CSF)
- Soliton solutions on the sphere.
- Soliton solutions on the hyperbolic space.

<u>Definition</u> A family of curves $\hat{X}^t : I \longrightarrow (M^2, g), t \in [0, T)$, is said to be a solution to the Curve Shortening Flow (CSF) with a given initial condition $X : I \longrightarrow M^2$, if

$$\begin{cases} \frac{\partial}{\partial t} \hat{X}^t(\cdot) = \hat{k}^t(\cdot) \hat{N}^t(\cdot) \\ \hat{X}^0(\cdot) = X(\cdot), \end{cases}$$

 $\hat{k}^t(\cdot)$ is the geodesic curvature, $\hat{N}^t(\cdot)$ unit normal vector field The geodesics are trivial solutions. • Epstein-Gage (1987) showed that when $M^2 = \mathbb{R}^2$, the CSF is geometrically the same for

$$rac{\partial}{\partial t}\hat{X}^t(\cdot) = \hat{k}^t(\cdot)\hat{N}^t(\cdot) + \mathbf{tangential\ components}$$

 \downarrow

one can define the CSF to satisfy $\left\langle \frac{\partial}{\partial t} \hat{X}^t(\cdot), \hat{N}^t(\cdot) \right\rangle = \hat{k}^t(\cdot).$

- The name curve shortening flow is justified: when the curves \hat{X}^t are closed, it is a gradient type of flow for the arc length functional.
- When the flow evolves by isometries or homotheties then X(s) is called a self-similar solution to the CSF.
- The curve is a soliton if the flow evolves just by isometries.

- On \mathbb{R}^2 the Grim Reaper: graph of $f(s) = \ln(\cos(s))$ evolves by translations. Giga (2006): unique such curve on \mathbb{R}^2 .
- The yin-yang spiral evolves by isometries of \mathbb{R}^2 .
- Abresch-Langer and Epstein-Weinstein investigated the closed curves, not necessarily simple, that evolve by homotheties.
- In the 80s, Gage, Gage-Hamilton and finally Grayson closed embedded curves evolve to circular curves and then they collapse into a point at a finite time.
- Halldorsson (2012) described all self-similar solutions on \mathbb{R}^2 .
- Angenent (1991): under some general conditions, the CSF evolves in a sense into a self-similar flow, showing the importance of self-similar solutions.

• Halldorsson (2015) classified the self-similar solutions on the Minkowski plane.

Soliton solutions to CSF on S^2 H. dos Reis (2019) <u>Theorem</u> X(s) a non-geodesic curve p.a.l. on $S^2 \subset \mathbb{R}^3$ is a soliton solution to the CSF

 $\exists \mathbf{v} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$ such that $\langle T(s), v \rangle = \kappa(s)$, where T = X' and κ is the geodesic curvature of X (w.l.o.g. v = ae, e = (0, 0, 1), a > 0).

 \uparrow

 \uparrow

The functions $\alpha = \langle X, e \rangle$, $\tau = \langle T, e \rangle$, $\nu = \langle N, e \rangle$ satisfy

$$\begin{cases} \alpha' = \tau, \\ \tau' = a\tau\nu - \alpha, \\ \nu' = -a\tau^2, \end{cases} \quad \text{with} \quad \alpha^2(0) + \tau^2(0) + \nu^2(0) = 1. \end{cases}$$

<u>Theorem</u>

- For any $v \in \mathbb{R}^3 \setminus \{0\}$, there is a 2-parameter family of non trivial soliton solutions to the CSF on the sphere, $X(s) \ s \in \mathbb{R}$.
- The two ends are asymptotic to the geodesic Γ of S² orthogonal to v.
- If 0 < ||v|| < 2, then X intersects Γ at infinitely many points
- If ||v|| ≥ 2, then X intersects Γ at most on a finite number of points. In this case, each end of X converges to Γ without self-intersections.

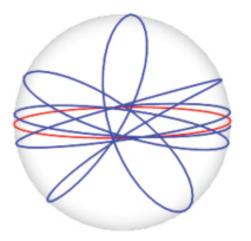


Figure 1: |v|=0.5 infinite intersection points with Γ

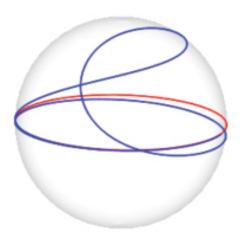


Figure 3: |v| = 2

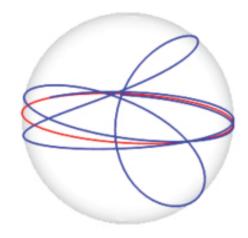


Figure 2: |v| = 1 infinite intersection points

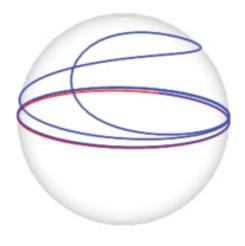


Figure 4: |v| = 3

Soliton solutions to the CSF on \mathbb{H}^2 Fábio N. da Silva, _____ (2022)

We consider $\mathbb{H}^2 \subset \mathbb{R}^3_1$, with the Minkowski metric on \mathbb{R}^3_1

$$\langle u, v \rangle = -u_1 v_1 + u_2 v_2 + u_3 v_3.$$

• The CSF on \mathbb{H}^2 is geometrically invariant if tangential components are added to the right hand side of $\frac{\partial}{\partial t}\hat{X}^t = \hat{k}^t\hat{N}^t$.

• It is a gradient type of flow for the arc length functional on \mathbb{H}^2 .

 $X: I \to \mathbb{H}^2 \subset \mathbb{R}^3_1$ a regular curve parametrized by arc length s. T(s) = X'(s) the tangent vector field,

 $N(s) = X(s) \times T(s)$ the unit normal vector field

 $k(s) = \langle T'(s), N(s) \rangle$ the geodesic curvature of X.

A one parameter family of curves $\hat{X} : I \times J \to \mathbb{H}^2$ is called a curve shortening flow (CSF) with initial condition X, if

$$\left\{ \begin{array}{l} \left\langle \frac{\partial}{\partial t} \hat{X}(s,t), \hat{N}(s,t) \right\rangle = \hat{k}(s,t), \\ \hat{X}(s,0) = X(s), \end{array} \right.$$

where $\hat{k}^t(\cdot) = \hat{k}(\cdot, t)$ is the geodesic curvature $\hat{N}^t(\cdot) = \hat{N}(\cdot, t)$ is the unit normal vector field of $\hat{X}^t(\cdot) = \hat{X}(\cdot, t)$.

Solitons of the CSF on \mathbb{H}^2

<u>Definition</u> Let $\hat{X} : I \times J \to \mathbb{H}^2 \subset \mathbb{R}^3_1$ be a solution to the CSF, with initial condition $X : I \to \mathbb{H}^2$. We say that X is a soliton solution to the CSF if

$$\hat{X}^t(s) = M(t)X(s), \quad \text{for all} \quad t \in J,$$

where $M(t) : \mathbb{H}^2 \to \mathbb{H}^2$ is a 1-parameter family of isometries, such that M(0) = Id is the identity map.

An isometry of \mathbb{H}^2 is an element of the Lie group $O_1(3)$ that preserves \mathbb{H}^2 .

<u>Theorem.</u> Let $X : I \to \mathbb{H}^2$ be a regular curve parametrized by arc length $s \in I$. Then X is a soliton solution to the CSF

 \uparrow

there is a vector $v \in \mathbb{R}^3_1 \setminus \{0\}$ such that

$$\langle T(s), v \rangle = k(s), \qquad \forall s \in I,$$

where T(s) is the unit tangent vector field and k(s) is the geodesic curvature of X.

<u>Remark</u> w.l.o.g, up to isometries of \mathbb{H}^2 ,

$$v \text{ is a multiple of } \begin{cases} w_1 = (1,0,0) & \text{if } v \text{ is timelike}, \\ w_2 = (1,1,0) & \text{if } v \text{ is lightlike}, \\ w_3 = (0,0,-1) & \text{if } v \text{ is spacelike}. \end{cases}$$

Depending on the type of the vector v, the curvature is given by

$$k_i(s) = \langle T(s), v_i \rangle$$
 where $\mathbf{v_i} = \mathbf{aw_i}, \quad a > 0 \quad i = 1, 2, 3.$

The curve X evolves as $\hat{X}_i(s,t) = M_i(t)X(s)$, where

$$M_{1}(t) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(at) & \sin(at) \\ 0 & -\sin(at) & \cos(at) \end{pmatrix},$$
$$M_{2}(t) := \begin{pmatrix} 1 + \frac{(at)^{2}}{2} & -\frac{(at)^{2}}{2} & at \\ \frac{(at)^{2}}{2} & 1 - \frac{(at)^{2}}{2} & at \\ at & -at & 1 \end{pmatrix},$$
$$M_{3}(t) := \begin{pmatrix} \cosh(at) & \sinh(at) & 0 \\ \sinh(at) & \cosh(at) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

System of ODEs

<u>Proposition:</u> A curve $X : I \to \mathbb{H}^2$, parametrized by arc length s, is a soliton solution to the <u>CSF</u> i.e. $\exists v \in \mathbb{R}^3_1 \setminus \{0\}$, such that

$$k_{(}s) = \langle T(s), v \rangle, \qquad \forall s \in I,$$

 $\begin{aligned} v &= ae_i, \text{ for } a > 0, \quad i \in \{1, 2, 3\} \text{ and the functions } \quad \alpha_i(s) = \langle X(s), e_i \rangle, \\ \tau_i(s) &= \langle T(s), e_i \rangle, \quad \eta_i(s) = \langle N(s), e_i \rangle, \quad \text{ satisfy the system of ODEs } \\ \begin{cases} \alpha_i'(s) &= \tau_i(s), \\ \tau_i'(s) &= a\tau_i(s)\eta_i(s) + \alpha_i(s), \\ \eta_i'(s) &= -a\tau_i^2(s), \end{cases} \end{aligned}$

with initial condition $(\alpha_i(0), \tau_i(0), \eta_i(0))$ satisfying

$$-\alpha_i^2(0) + \tau_i^2(0) + \eta_i^2(0) = \begin{cases} -1, & \text{if } i = 1, \\ 0, & \text{if } i = 2, \\ 1, & \text{if } i = 3. \end{cases}$$

Relating solutions of the system to soliton curves

Proposition. Let $(\alpha(s), \tau(s), \eta(s))$ be a solution to the system

$$\begin{cases} \alpha'(s) = \tau(s) \\ \tau'(s) = a\tau(s)\eta(s) + \alpha(s) \\ \eta'(s) = -a\tau^2(s), \end{cases} \qquad a > 0, \text{ fixed },$$

and initial conditions at s = 0, satisfying

$$-\alpha^{2}(0) + \tau^{2}(0) + \eta^{2}(0) = -1$$
 (resp. 0 and 1),

 $\exists \mathbf{X} : \mathbf{I} \to \mathbb{H}^2$ p.a.l. s, such that $k = a\tau$, T and N satisfy

$$\alpha(s) = \langle X(s), e \rangle, \quad \tau(s) = \langle T(s), e \rangle \quad \text{and} \quad \eta(s) = \langle N(s), e \rangle,$$

where e = (-1, 0, 0) (resp. e = (-1, 1, 0) and e = (0, 0, 1)).

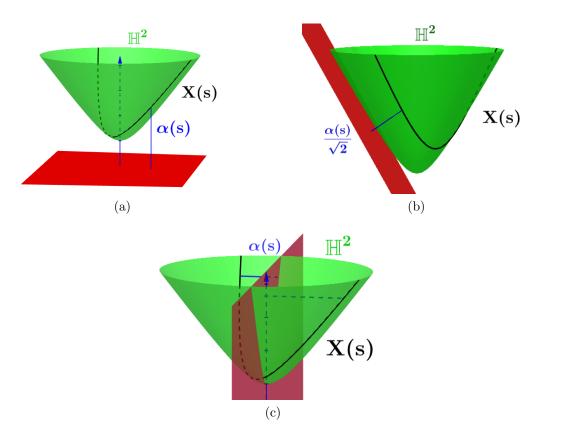


Figure 5: Geometric interpretation of the functions $\alpha(s)$, when e = (-1, 0, 0), e = (-1, 1, 0), e = (0, 0, 1).

Investigating soliton curves to the CSF on \mathbb{H}^2 is equivalent to studying the solutions $\psi(s) = (\alpha(s), \tau(s), \eta(s))$ of the system of ODEs, for each constant a > 0, defined on a maximal interval $I = (\omega_-, \omega_+)$, with initial condition $\psi(0) \in H \cup C \cup S \subset \mathbb{R}^3$, where $H := \{(\alpha, \tau, \eta) \in \mathbb{R}^3 : -\alpha^2 + \tau^2 + \eta^2 = -1, \alpha > 0\},\ C := \{(\alpha, \tau, \eta) \in \mathbb{R}^3 \setminus \{0\} : -\alpha^2 + \tau^2 + \eta^2 = 0, \alpha > 0\},\ S := \{(\alpha, \tau, \eta) \in \mathbb{R}^3 : -\alpha^2 + \tau^2 + \eta^2 = 1\}.$

Particular solutions: τ(s) = b ∈ ℝ constant ⇔ ψ(0) ∈ S, I = ℝ, and b ∈ {-1,0,1}, called trivial solutions. Moreover,
i) If b = 0, then ψ(s) = (0,0,±1) are singular solutions. They correspond to geodesics on ℍ².

ii) If $b^2 = 1$, then a = 1 and $\psi(s) = (\pm s + \alpha(0), \pm 1, -s \pm \alpha(0))$. They correspond to planar curves on \mathbb{H}^2 .

Theorem.

- For any v ∈ ℝ₁³ \ {0}, there is a 2-parameter family of non-trivial (non constant curvature) soliton solutions to the CSF on H².
- There are three classes of soliton curves on \mathbb{H}^2 , determined by the type of the vector v.
- A series of lemmas inply that each soliton
 - is defined on the whole real line;
 - at each end, the curvature tends to a constant $\in \{-1, 0, 1\}$.

- is an embedded curve on \mathbb{H}^2 ;

Visualizing some soliton solutions to the CSF on \mathbb{H}^2

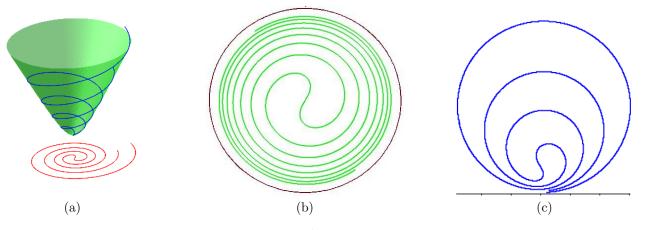


Figure 6: Soliton solution to the CSF on \mathbb{H}^2 with fixed vector v = (-1, 0, 0) and a = 1.

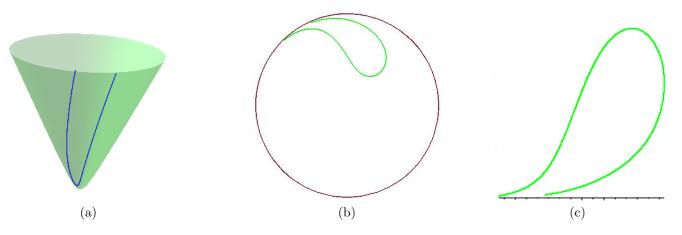


Figure 7: Soliton solution to the CSF on \mathbb{H}^2 with fixed vector (-1, 1, 0) and a = 1.

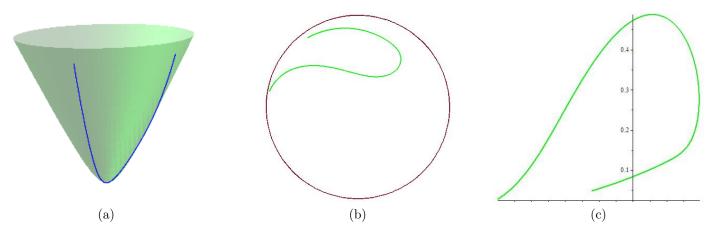


Figure 8: Soliton solution to the CSF on \mathbb{H}^2 with fixed vector (0, 0, 1) and a = 1.

Remark:

- Partial results on the \mathbb{H}^2 were also obtained, independently, by Woolgar-Xie.
- Fábio N. da Silva, _____ "Self-similar solutions to the curvature flow and its inverse on the 2-dimensional light cone" 2022, just appeared on line.

<u>References</u>:

- dos Reis, H.F.S., Tenenblat, K., "Soliton solutions to the Curve Shortening Flow on the sphere", Proc. A.M.S. 147 (11) (2019) 4955-4967, DOI.org/10.1090/proc/14178.
- Nunes da Silva, F., Tenenblat, K. "Soliton solutions to the curve shortening flow on the 2-dimensional hyperbolic space", Rev. Mat. Iberoam. 2022, DOI.org/10.4171/RMI/1343.
- 3. Nunes da Silva, F., Tenenblat, K. "Self-similar solutions to the curvature flow and its inverse on the 2-dimensional light cone", Annali di Matematica Pura ed Applicata 2022 DOI.org/10.1007/s10231-022-01240-8.

THANK YOU !

HAPPY BIRTHDAY PETER !!