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Outline of the presentation

Part 1 : On diffeologies

Part 2 : Weak and strong solutions of functional equations
with parameters

Part 3 : Symmetry groups, infinitesimal symmetries

Part 4 : Invariants of the equations
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Motivations for diffeologies

Define a “user-friendly” category for differential geometry
including :
I infinite dimensional objects with no atlas
I objects with singularities of various kind : quotients,

orbifolds, quasifolds etc.
I “embarrassing” quotients : R/Q, the irrational torus,

Diffeologies provide a proper framework for :
I calculus of variations
I defining smooth maps, operations, actions
I defining the de Rham complex, symplectic forms,

(smooth) homotopy
I defining “bundles”
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Necessary notions
Definition (Diffeology)
Let X be a set. A parametrisation of X is a map of sets
p : U → X where U is an open subset of Euclidean space (no
fixed dimension). A diffeology P on X is a set of
parametrisations satisfying the following three conditions :
1. (Covering) ∀x ∈ X , ∀n ∈ N, the constant function

p : Rn → {x} ⊆ X is in P.
2. (Locality) Let p : U → X be a parametrisation such that

for every u ∈ U there exists an open neighbourhood
V ⊆ U of u satisfying p|V ∈ P. Then p ∈ P.

3. (Smooth Compatibility) Let (p : U → X ) ∈ P. Then for
every n, every open subset V ⊆ Rn, and every smooth
map F : V → U, we have p ◦ F ∈ P.

A set X equipped with a diffeology P is called a
diffeological space, and the parametrisations p ∈ P are
called plots.
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Necessary notions (2)

Definition (Diffeologically Smooth Map)
Let (X ,PX ) and (Y ,PY ) be two diffeological spaces, and let
F : X → Y be a map. Then we say that F is smooth if
F ◦ PX ⊂ PY .

With the above notations, we define
I the pull-back diffeology F ∗(PY ) as the diffeology,

maximal for inclusion, for which F is smooth.
I the push-forward diffeology F∗(PX ) as the diffeology,

minimal for inclusion, for which F is smooth. (⇒ any
quotient X/ ∼ of a diffeological space X carries a
natural diffeology π∗(X )).

I Let (Xi ,Pi)I be a family of diffeological spaces, and let
πk :

∏
I Xi → Xk , PI =

⋂
I π
∗
i (Pi) is the product

diffeology.
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Necessary diffeologies for this talk
I Diffeologies for (infinite dimensional) manifolds

Let M be a smooth manifold and

P∞(M) =
∐
O

C∞(O,M)

I The Cauchy diffeology. Let Y be a complete topological
vector space and let X ⊂ Y as a diffeological space
with smooth inclusion i in Y .
C(X ,Y ) is the subset of XN of sequences that converge
in Y .
The Cauchy diffeology is defined as

PC = P(XN)|C(X ,Y ) ∩ lim∗P∞(Y )

I The group of diffeomorphisms of a diffeological space is
a diffeological space for which composition and
inversion is smooth.
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Diffeological functional equations with
parameters
Let Z be a LCTVS and let Y be a Fréchet space with dense
subset X (with diffeology). Let Q be a diffeological space of
parameters.
Definition
A smooth functional equation is defined by a smooth map
F : X × Q → Z and by the condition

F (u, q) = 0 (1)

The set NumF (Y ) ⊂ C∞(Q, C(X ,Y )) of Y−smooth
numerical schemes is such that such that, if
x(q) = (xn)n∈N ∈ NumF (Y )(q) for q ∈ Q,
limn→+∞ F (xn, q) = 0. The space of Q−parametrized
solutions of (1) is

SY (F ) =
{

lim
n→+∞

x ∈ C∞(Q,Y ) | x ∈ NumF (Y )
}
.
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Strong solutions in X versus weak solutions in Y .

Let S(F ) be the set of strong solutions to (1) and let SX (F )
the limits in X of sequences (un) such that
∃q, limF (un, q) = 0.
Since X ⊂ Y , then SF ⊂ SX (F ) ⊂ SY (F ).

Lemma
(exercise) S(F ) = SX (F ) as diffeological spaces.
BUT There may happen that

lim∗P(C(X ,Y )) 6= P∞(Y )

Counter-example : X = R∗ and Y = R

Open question : what diffeology is adequate for SY (F )?
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What should be a symmetry ?
Starting point : a symmetry should transform a solution of
(1) to another solution of (1)

Various possible approaches for strong solutions which all
carry diffeologies :
I C∞(S(F ),S(F ))
I the smooth maps in C∞(X ,X ) which restrict to

smooth maps in C∞(S(F ),S(F ))
I the smooth maps (or diffeomorphisms) in C∞(X ,X )

which restrict to diffeomorphisms S(F )
I Diff (S(F ))

which have their pending parts for weak solutions in Y , but
especially :
I C∞(SY (F ),SY (F )) (with which diffeology on SY (F )?)
I Diff (SY (F ))
I automorphisms of the diffeological fiber pseudo-bundle

NumF (Y )→ SY (F ) (with the push-forward diffeology
on SY (F ) via the limit map).
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On infinitesimal symmetries

Starting point : an infinitesimal symmetry should be tangent
at the identity, considered as an element of the space of
symmetries of (1).

I There exists actually 3 types of tangent spaces to a
diffeological space : diff, kinetic or exterior,

I If the space of symmetries is not a group, the tangent
space may not be a vector space,

I Even if the space of symmetries is a diffeological group,
the infinitesimal symmetries may not act on X or Y ,

I infinitesimal symmetries may not "integrate" to
symmetries (no exponential map).
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Documents :
I On the differential geometry of numerical schemes and

weak solutions of functional equations. Nonlinearity 33,
No. 12, 6835-6867 (2020).

I On diffeological infinite dimensional bundles and
pseudo-bundles : examples of interest, results and
applications (in preparation)

Perspectives : apply these propositions to examples of
interest, in which one of these propositions is feasible and
useful in order to :
I study weak solutions
I describe efficiently invariants of the functional equations

that can be defined through geometric invariants of the
symmetries.
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