On symmetries of weak solutions: a rigorous approach by diffeologies

Jean-Pierre Magnot

5 august 2022

Conference "Symmetry, Invariants, and their Applications : A Celebration Peter Olver's 70th Birthday" University of Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France and Lycée Jeanne d'Arc, Avenue de Grande Bretagne, 63000 Clermont-Ferrand, France

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Outline of the presentation

Part 1 : On diffeologies

Part 2 : Weak and strong solutions of functional equations with parameters

Part 3 : Symmetry groups, infinitesimal symmetries

Part 4 : Invariants of the equations

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Thanks

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Motivations for diffeologies

Define a "user-friendly" category for differential geometry including :

- infinite dimensional objects with no atlas
- objects with singularities of various kind : quotients, orbifolds, quasifolds etc.
- "embarrassing" quotients : \mathbb{R}/\mathbb{Q} , the irrational torus,

Diffeologies provide a proper framework for :

- calculus of variations
- defining smooth maps, operations, actions
- defining the de Rham complex, symplectic forms, (smooth) homotopy
- defining "bundles"

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Necessary notions

Definition (Diffeology)

Let X be a set. A **parametrisation** of X is a map of sets $p: U \to X$ where U is an open subset of Euclidean space (no fixed dimension). A **diffeology** \mathcal{P} on X is a set of parametrisations satisfying the following three conditions :

- 1. (Covering) $\forall x \in X, \forall n \in \mathbb{N}$, the constant function $p \colon \mathbb{R}^n \to \{x\} \subseteq X$ is in \mathcal{P} .
- (Locality) Let p: U → X be a parametrisation such that for every u ∈ U there exists an open neighbourhood V ⊆ U of u satisfying p|_V ∈ P. Then p ∈ P.
- (Smooth Compatibility) Let (p: U → X) ∈ P. Then for every n, every open subset V ⊆ ℝⁿ, and every smooth map F: V → U, we have p ∘ F ∈ P.

A set X equipped with a diffeology \mathcal{P} is called a **diffeological space**, and the parametrisations $p \in \mathcal{P}$ are called **plots**.

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Necessary notions (2)

Definition (Diffeologically Smooth Map)

Let (X, \mathcal{P}_X) and (Y, \mathcal{P}_Y) be two diffeological spaces, and let $F: X \to Y$ be a map. Then we say that F is **smooth** if $F \circ \mathcal{P}_X \subset \mathcal{P}_Y$.

With the above notations, we define

- the pull-back diffeology F*(PY) as the diffeology, maximal for inclusion, for which F is smooth.
- If the push-forward diffeology F_{*}(P_X) as the diffeology, minimal for inclusion, for which F is smooth. (⇒ any quotient X/ ~ of a diffeological space X carries a natural diffeology π_{*}(X)).

Let (X_i, P_i)_I be a family of diffeological spaces, and let π_k : ∏_I X_i → X_k, P_I = ∩_I π^{*}_i(P_i) is the product diffeology. On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Necessary diffeologies for this talk

Diffeologies for (infinite dimensional) manifolds
Let *M* be a smooth manifold and

$$\mathcal{P}_{\infty}(M) = \prod_{O} C^{\infty}(O, M)$$

The Cauchy diffeology. Let Y be a complete topological vector space and let X ⊂ Y as a diffeological space with smooth inclusion i in Y.

 $\mathcal{C}(X, Y)$ is the subset of $X^{\mathbb{N}}$ of sequences that converge in Y.

The Cauchy diffeology is defined as

$$\mathcal{P}_{\mathcal{C}} = \mathcal{P}(X^{\mathbb{N}})|_{\mathcal{C}(X,Y)} \cap \operatorname{\mathsf{lim}}^*\mathcal{P}_{\infty}(Y)$$

The group of diffeomorphisms of a diffeological space is a diffeological space for which composition and inversion is smooth. On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Diffeological functional equations with parameters

Let Z be a LCTVS and let Y be a Fréchet space with dense subset X (with diffeology). Let Q be a diffeological space of parameters.

Definition

A **smooth functional equation** is defined by a smooth map $F: X \times Q \rightarrow Z$ and by the condition

$$F(u,q) = 0 \tag{1}$$

The set $Num_F(Y) \subset C^{\infty}(Q, C(X, Y))$ of Y-smooth numerical schemes is such that such that, if $x(q) = (x_n)_{n \in \mathbb{N}} \in Num_F(Y)(q)$ for $q \in Q$, $\lim_{n \to +\infty} F(x_n, q) = 0$. The space of Q-parametrized solutions of (1) is

$$\mathcal{S}_{Y}(F) = \left\{ \lim_{n \to +\infty} x \in C^{\infty}(Q, Y) \, | \, x \in \operatorname{Num}_{F}(Y) \right\}.$$

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Strong solutions in X versus weak solutions in Y.

Let S(F) be the set of strong solutions to (1) and let $S_X(F)$ the limits **in X** of sequences (u_n) such that $\exists q$, lim $F(u_n, q) = 0$. Since $X \subset Y$, then $S_F \subset S_X(F) \subset S_Y(F)$.

Lemma (exercise) $S(F) = S_X(F)$ as diffeological spaces. BUT There may happen that

 $\lim_* \mathcal{P}(\mathcal{C}(X, Y)) \neq \mathcal{P}_{\infty}(Y)$

Counter-example : $X = \mathbb{R}^*$ and $Y = \mathbb{R}$

Open question : what diffeology is adequate for $S_Y(F)$?

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

What should be a symmetry?

Starting point : a symmetry should transform a solution of (1) to another solution of (1)

Various possible approaches for strong solutions which all carry diffeologies :

- $\blacktriangleright C^{\infty}(S(F),S(F))$
- ► the smooth maps in C[∞](X, X) which restrict to smooth maps in C[∞](S(F), S(F))
- ► the smooth maps (or diffeomorphisms) in C[∞](X, X) which restrict to diffeomorphisms S(F)
- Diff(S(F))

which have their pending parts for weak solutions in Y, but especially :

- $C^{\infty}(S_Y(F), S_Y(F))$ (with which diffeology on $S_Y(F)$?)
- $Diff(S_Y(F))$
- ▶ automorphisms of the diffeological fiber pseudo-bundle $Num_F(Y) \rightarrow S_Y(F)$ (with the push-forward diffeology on $S_Y(F)$ via the limit map).

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

On infinitesimal symmetries

Starting point : an infinitesimal symmetry should be tangent at the identity, considered as an element of the space of symmetries of (1).

- There exists actually 3 types of tangent spaces to a diffeological space : diff, kinetic or exterior,
- If the space of symmetries is not a group, the tangent space may not be a vector space,
- Even if the space of symmetries is a diffeological group, the infinitesimal symmetries may not act on X or Y,
- infinitesimal symmetries may not "integrate" to symmetries (no exponential map).

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Documents :

- On the differential geometry of numerical schemes and weak solutions of functional equations. *Nonlinearity* 33, No. 12, 6835-6867 (2020).
- On diffeological infinite dimensional bundles and pseudo-bundles : examples of interest, results and applications (in preparation)

<u>Perspectives</u> : apply these propositions to examples of interest, in which one of these propositions is **feasible** and **useful** in order to :

- study weak solutions
- describe efficiently invariants of the functional equations that can be defined through geometric invariants of the symmetries.

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Thanks for your attention and for your interest

On symmetries of weak solutions: a rigorous approach by diffeologies

> Jean-Pierre Magnot

On diffeologies

Weak and strong solutions

On symmetries and infinitesimal symmetries

From published papers to perspectives

Thanks

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ