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Geometric realizations of Completely Integrable Systems

Let γ : R2 → R3 satisfy the Vortex filament flow equation

γt = κB

where B is the binormal, κ the curvature and τ the torsion of γ

. If φ = κe i
∫
τdx ,

it satisfies

φt = iφxx +
i

2
||φ||2φ

the Nonlinear Schrödinger equation (NLS) (Hasimoto, 72).

We say the Vortex Filament flow is an Euclidean realization of NLS.

Let un ∈ R2 be a polygon in the centro-affine plane satisfying the tangential flow

(un)t =
1

det(un−1, un+1)
(un+1 − un−1)

Let qn be the cross ratio of un−1, un, un+1, un+2, and assume det(un, un+1) = 1
for all n. Then qn satisfies the Volterra equation

(qn)t = qn(qn+1 − qn−1).

The tangential flow is a centro-affine realization of the Volterra model.
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Moving frames and invariants for curves and polygons

Let a Lie group G act on M, and let C∞(R,M) be the space of smooth,
parametrized curves

. γ ∈ C∞(R,M) has a monodromy if there exists T ∈ R (the
period) and m ∈ G (the monodromy) such that γ(x + T ) = m · γ(x) for any x .
The group acts naturally on the jet space g · γ(k) = (g · γ)(k), k = 0, 1, . . . . Fels
and Olver’s moving frames definitions:

Definition

A (left or right invariant) moving frame of order k is an equivariant map

ρ : J(k)(R,M) → G

with respect to the prolonged action of G on J(k)(R,M) and the (left or right)
action of G on itself.

Definition

A differential invariant for parametrized curves is a map

I : J(k)(R,M) → R

such that I (g · ∗) = I (∗), for any g ∈ G .
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A polygon is a bi-infinite sequence u : Z → M

. A twisted polygon is a polygon
such that u(i +N) = ui+N = µ · ui for any i ∈ Z, where µ ∈ G is the monodromy
and N ∈ Z the period. The set of twisted polygons with fixed monodromy can be
identified with MN and G acts on MN via the diagonal action (g · u)i = g · ui .
Mansfield, MB and Wang’s discrete moving frames definitions:

Definition

A (left or right invariant) moving frame along polygons is an equivariant map

ρ : MN → GN

with respect to the action of G on MN and the (left or right) diagonal action of
G on GN .

Definition

A difference invariant for N-twisted polygons is a map

I : MN → R (or others like G , g, etc)

such that I (g · ∗) = I (∗), for any g ∈ G .

Note: if ρ is a left (res. right) moving frame, so is ρg (resp. gρ), g invariant .
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Maurer-Cartan equations

Definition

(Fels, Olver) Let ρ be a left (resp. right) moving frame for smooth curves

. Its left
(resp. right) derivative wrt the parameter x is an element of the Lie algebra. If
G ⊂ GL(m) the left (resp. right) Maurer-Cartan matrix is given by

K = ρ−1ρx ∈ C∞(S1, g) (resp. ρxρ
−1)

and its entries generate all differential invariants under minimal assumptions
(Hubert 07).

Note: if ρ→ ρg then K → g−1gx + g−1Kg , the left gauge action.

Theorem

(MB, 08,10) Assume M = G/H, H ⊂ G isotropic subgroup of p = [H] ∈ M.
Under minimal technical assumptions, the equivalence classes of curves up to the
geometric action of G can be identified with an open (often dense) subset of

C∞(S1, g)/C∞(S1,H)

where C∞(S1,H) acts on C∞(S1, g) via the left (resp. right) gauge action.
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Maurer-Cartan equations

Definition

(Mansfield, MB, Wang, 13) Let ρ be a left (resp. right) moving frame for twisted
polygons

. We define the left (resp. right) Maurer-Cartan matrix for ρ to be the
bi-infinite periodic sequence in G

Kn = ρ−1
n ρn+1 ∈ G (resp. ρn+1ρ

−1
n ).

The Maurer-Cartan generate all polygonal invariants under minimal assumptions.

Note: if ρn → ρngn, gn invariant, then Kn → g−1
n Kngn+1, the discrete left gauge

action.

Theorem

(Mansfield, MB, Wang, 13) Assume M = G/H, H subgroup of G and isotropic
group of p ∈ M. The set of left (resp. right) N-periodic Maurer-Cartan matrices
can be identified with an open subset (often dense) of

GN/HN

HN acts on GN via the left (resp. right) gauge action (hn, gn) → h−1
n gnhn+1.
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q,p),
q, p ∈ Rm, is

qt =
∂h

∂p

pt = −
∂h

∂q

or

(
qt
pt

)
=

(
0 I
−I 0

)
∇h with symplectic structure

(
0 I
−I 0

)
.

If a system is defined by vt = P∇vh we say it is Hamiltonian with Hamiltonian
function h(v) if

{f , g }(v) = (∇vf )
TP∇vg

is a Poisson bracket:

1 {f , g } = −{g , f } and {f + g , h} = {f , h}+ {g , h};

2 Leibnitz’s rule {fg , h} = f {g , h}+ g {f , h}

and Jacobi’s property {f,{h,g}}+{h,{g,f}}+{g,{f,h}}=0.
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Maŕı Beffa (UW-Madison) Invariants to Integrable Systems Halifax, August 2022 7 / 16



Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q,p),
q, p ∈ Rm, is

qt =
∂h

∂p

pt = −
∂h

∂q

or

(
qt
pt

)
=

(
0 I
−I 0

)
∇h with symplectic structure

(
0 I
−I 0

)
.

If a system is defined by vt = P∇vh we say it is Hamiltonian with Hamiltonian
function h(v) if

{f , g }(v) = (∇vf )
TP∇vg

is a Poisson bracket:

1 {f , g } = −{g , f } and {f + g , h} = {f , h}+ {g , h};

2 Leibnitz’s rule {fg , h} = f {g , h}+ g {f , h}

and Jacobi’s property {f,{h,g}}+{h,{g,f}}+{g,{f,h}}=0.
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The same definition applies to Hamiltonian PDEs

. They are of the form

zt = PδF

with z(t, x) ∈ Rm smooth and P a linear differential operator, F(z) =
∫
S1 f (z)dx

the Hamiltonian, and d
dε |ε=0F(z + εy) =

∫
S1〈δF , y〉dx the variational derivative.

The Poisson bracket would be

{F ,G}(z) =
∫
S1

〈δF ,PδG〉dx

satisfying #1 and Jacobi.
It also applies to differential-difference Hamiltonian systems of the form

(vn)t = Pnδnh

with vn a periodic bi-infinite sequence, h : MN → R the Hamiltonian, and δnh its
variational derivative in the n-direction. The Poisson bracket (satisfying #1 and
Jacobi) would be defined as

{f , h}(v) =
∑
n

〈δnf ,Pnδnh〉

with 〈, 〉 an inner product and Pn a linear difference operator.
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Maŕı Beffa (UW-Madison) Invariants to Integrable Systems Halifax, August 2022 8 / 16



The same definition applies to Hamiltonian PDEs . They are of the form

zt = PδF

with z(t, x) ∈ Rm smooth and P a linear differential operator, F(z) =
∫
S1 f (z)dx

the Hamiltonian, and d
dε |ε=0F(z + εy) =

∫
S1〈δF , y〉dx the variational derivative.

The Poisson bracket would be

{F ,G}(z) =
∫
S1

〈δF ,PδG〉dx

satisfying #1 and Jacobi.
It also applies to differential-difference Hamiltonian systems of the form

(vn)t = Pnδnh

with vn a periodic bi-infinite sequence, h : MN → R the Hamiltonian, and δnh its
variational derivative in the n-direction. The Poisson bracket (satisfying #1 and
Jacobi) would be defined as

{f , h}(v) =
∑
n

〈δnf ,Pnδnh〉

with 〈, 〉 an inner product and Pn a linear difference operator.
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Examples

1 Korteweg de Vries equation

vt = vxxx + 3vvx = (
d3

dx3
+ v

d

dx
+

d

dx
v)δ

1

2
v2, h =

1

2

∫
S1

v2

.

2 Volterra equation

(un)t = un(un+1 − un−1) or if un = pnpn−1

(pn)t = p2n(pn+1 − pn−1) = p2n(T − T −1)p2n δ ln pn, h =
∑
n

ln pn.

3 Toda Lattice

(un)tt = exp(un−1 − un) − exp(un − un+1)

or if qn = (un)t , pn = exp(un − un+1)(
pn
qn

)
t

=

(
pn(qn − qn+1)
pn−1 − pn

)
=

(
pn(T −1 − T )pn pn(1 − T )qn
−qn(1 − T −1)pn T −1pn − pnT

)
δqn, h =

∑
n

qn.
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BiHamiltonian systems

Definition

Two Hamiltonian structures defined by Poisson brackets {, }1 and {, }2 are
compatible, whenever {f , h} = {f , h}1 + {f , h}2 is also Poisson.

Arnold-Liouville’s theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville’s integrability. When the
system is biHamiltonian, there are methods to generate enough preserved
quantities.

(KdV) vt = vxxx + 3vvx = (
d3

dx3
+ v

d

dx
+

d

dx
v)δ

1

2
v2

=
d

dx
(vxx +

3

2
v2) =

d

dx
δ(−

1

2
v2
x +

1

2
v3)

(mVol) (pn)t = p2n(pn+1 − pn−1) = p2n(T − T −1)p2n δ ln pn

= pn(T − 1)(T + 1)−1pn δ(pnpn−1)
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BiHamiltonian systems

Definition

Two Hamiltonian structures defined by Poisson brackets {, }1 and {, }2 are
compatible, whenever {f , h} = {f , h}1 + {f , h}2 is also Poisson.

Arnold-Liouville’s theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville’s integrability. When the
system is biHamiltonian, there are methods to generate enough preserved
quantities.
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Poisson brackets on C∞(R, g) and Poisson Lie Groups

Semisimple Lie groups have natural Poisson structures both on g∗ (continuous)
and on the group (discrete)

. If F : C∞(R, g) → R, then δF ∈ C∞(R, g∗), g∗ ' g

d

dε
|ε=0F(ξ+ εη) =

∫
S1

〈δξF , η〉

for all η ∈ g. The bracket

{F ,H}(ξ) =
∫
S1

〈(δξF)x + [ξ, δξF ], δξH〉 (1)

is Poisson, and its symplectic leaves are gauge orbits.

Theorem

(MB, 10) Assume M = G/H, H ⊂ G isotropic group of p ∈ M. Under some
technical assumptions, the Poisson bracket (1) can be reduced to the quotient

C∞(S1, g)/C∞(S1,H).
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Poisson brackets on C∞(R, g) and Poisson Lie Groups

If F : G → R

, then ∇F ,∇ ′F ∈ g∗ ' g, the left and right gradients, are defined
by

d

dε
|ε=0F(exp(εξ)g) = 〈∇gF , ξ〉,

d

dε
|ε=0F(g exp(εξ)) = 〈∇ ′gF , ξ〉

for all ξ ∈ g. If F : GN → R, define ∇F = (∇nF). Let T un = un+1 be the shift
operator, and r an R-matrix. The following is a Poisson bracket on GN

{F,H}(g) :=

N∑
n=1

r(∇nF ∧∇sH) +

N∑
n=1

r(∇ ′
nF ∧∇ ′

nH)

−

N∑
n=1

r
(
(T ⊗ 1)(∇ ′

nF ⊗∇nH)
)
+

N∑
n=1

r
(
(T ⊗ 1)(∇ ′

nH⊗∇nF)
)
.

(2)

The bracket is Poisson, and its symplectic leaves are (discrete) gauge orbits
(Semenov-Tian-Shansky, 85).

Theorem

(MB, 14) Assume M = G/H, H ⊂ G isotropic group of p ∈ M. Under some
technical assumptions, the Poisson bracket (2) can be reduced to the quotient

GN/HN .
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(MB and Wang, 13) The equations


(ain)t =

ai+1
n+1

a1
n+1

−
ai+1
n

a1
n−i

, i = 1, 2, · · · ,m − 1

(amn )t = 1
a1
n+1

− 1
a1n−m

are a discretization of so called Generalized KdV systems . They have a
projective/ Rm centro-affine geometric realization of the form

(γn)t = −
m

m + 1
γn −

a2n−1

a1n−1

γn+1 −
a3n−1

a1n−1

γn+2 − · · ·−
amn−1

a1n−1

γn+m−1 +
1

a1n−1

γn+m.

Case m = 2: if T akn = akn+1 and R = T −1 + 1+ T (invertible if N 6= 3s for any s)

{f , h}2(a) =
∑
n

(
∂f
∂a1n

∂f
∂a2n

)
)(T−1a2n − a2nT T − T−2

T 2 − T−1 0

)(
∂h
∂a1n
∂h
∂a2n

)

{f , h}1(a) =
∑
n

(
∂f
∂a1n

∂f
∂a2n

)
)(a1nR

−1(T − T−1)a1n a1nR
−1(1 − T−1)a2n

a2nR
−1(T − 1)a1n T a1n − a1nT

−1 + a2nR
−1(T − T−1)a2n

)(
∂h
∂a1n
∂h
∂a2n

)
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Maŕı Beffa (UW-Madison) Invariants to Integrable Systems Halifax, August 2022 13 / 16



(MB and Wang, 13) The equations


(ain)t =

ai+1
n+1

a1
n+1

−
ai+1
n

a1
n−i

, i = 1, 2, · · · ,m − 1

(amn )t = 1
a1
n+1

− 1
a1n−m

are a discretization of so called Generalized KdV systems . They have a
projective/ Rm centro-affine geometric realization of the form

(γn)t = −
m

m + 1
γn −

a2n−1

a1n−1

γn+1 −
a3n−1

a1n−1

γn+2 − · · ·−
amn−1

a1n−1

γn+m−1 +
1

a1n−1

γn+m.

Case m = 2: if T akn = akn+1 and R = T −1 + 1+ T (invertible if N 6= 3s for any s)

{f , h}2(a) =
∑
n

(
∂f
∂a1n

∂f
∂a2n

)
)(T−1a2n − a2nT T − T−2

T 2 − T−1 0

)(
∂h
∂a1n
∂h
∂a2n

)

{f , h}1(a) =
∑
n

(
∂f
∂a1n

∂f
∂a2n

)
)(a1nR

−1(T − T−1)a1n a1nR
−1(1 − T−1)a2n

a2nR
−1(T − 1)a1n T a1n − a1nT

−1 + a2nR
−1(T − T−1)a2n

)(
∂h
∂a1n
∂h
∂a2n
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons
(Rm)N , invariant under the centro-affine group preserving constant arc-length
` = det(γn, γn+1, . . . , γn+m−1) = 1

. They are of the form X = {Xn}
N
n=1. Define

the operator
Ln = a0n + a1nT + · · ·+ amn T m − T m+1

with Ln(γn) = 0 . If η = {ηn} is an invariant 1-form on polygons, define
dLη = {dLηn} to be the 2-form

dLηn(X,Y) = Xηn(L(Y)) − Y ηn(L(X)) − ηn(XL(Y) − YL(X)).

(If L = 1 we would have the standard differential). Let θ = {θn} be the 1-form

θn(X)(γ) = det(Xn, γn+1, . . . , γn+m).

Finally, define

ω1 =
∑
n

dLθn, ω2 =
∑
n

dθn.
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Theorem

(Calini, MB, 22) Both ω1 and ω2 are closed forms on the space of projective
vector fields preserving `, (i.e., they are pre-symplectic).

Theorem

(Calini, MB, 22) If f is a function of the invariants arn, then there exists a explicit
vector field Xf such that:

1 ω1(X
f ,Xh) = {f , h}1 is a Poisson bracket

2 ω2(X
f ,Xh) = {f , h}2 is a Poisson bracket.

Corollary

(Calini, MB, 22) The Hamiltonian structures {, }1 and {, }2 are compatible if, and
only if dω2 =

∑
n d

2θn = 0. The discretizations of generalized KdV are
biHamiltonian and Liouville-integrable.
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