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Geometric realizations of Completely Integrable Systems

Let v : R? — R3 satisfy the Vortex filament flow equation
Ye =«kB

where B is the binormal, k the curvature and T the torsion of y
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where B is the binormal, k the curvature and T the torsion of y. If ¢ = KeideX,
it satisfies

. i
b = it + 1 10PD
the Nonlinear Schrédinger equation (NLS) (Hasimoto, 72)
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Let v : R? — R3 satisfy the Vortex filament flow equation
Ye =«kB

where B is the binormal, k the curvature and T the torsion of y. If ¢ = KeideX,
it satisfies

. i
b = it + 1 10PD
the Nonlinear Schrédinger equation (NLS) (Hasimoto, 72).

We say the Vortex Filament flow is an Euclidean realization of NLS
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Geometric realizations of Completely Integrable Systems

Let v : R? — R3 satisfy the Vortex filament flow equation
Ye =«kB

where B is the binormal, k the curvature and T the torsion of y. If ¢ = KeideX,
it satisfies

: i
be = i+ S1OPD
the Nonlinear Schrédinger equation (NLS) (Hasimoto, 72).
We say the Vortex Filament flow is an Euclidean realization of NLS.

Let u, € R? be a polygon in the centro-affine plane satisfying the tangential flow

L ) (Un+1 — Up—1)

Uply = ————
(1) det(up—1, Ups1
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Geometric realizations of Completely Integrable Systems

Let v : R? — R3 satisfy the Vortex filament flow equation
Ye =«kB

where B is the binormal, k the curvature and T the torsion of y. If ¢ = KeideX,
it satisfies

: i
be = i+ S1OPD
the Nonlinear Schrédinger equation (NLS) (Hasimoto, 72).
We say the Vortex Filament flow is an Euclidean realization of NLS.

Let u, € R? be a polygon in the centro-affine plane satisfying the tangential flow

1
(Un)t = m (Un+1 - Unfl)

Let g, be the cross ratio of up_1, Upy Upi1, Unyo, and assume det(u,, Upr1) =1
for all n
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Geometric realizations of Completely Integrable Systems

Let v : R? — R3 satisfy the Vortex filament flow equation
Ye =«kB

where B is the binormal, k the curvature and T the torsion of y. If ¢ = KeideX,
it satisfies

: i
be = i+ S1OPD
the Nonlinear Schrédinger equation (NLS) (Hasimoto, 72).
We say the Vortex Filament flow is an Euclidean realization of NLS.

Let u, € R? be a polygon in the centro-affine plane satisfying the tangential flow

1
(Un)t = m (Un+1 - Unfl)

Let g, be the cross ratio of up_1, Upy Upi1, Unyo, and assume det(u,, Upr1) =1
for all n. Then g, satisfies the Volterra equation

(qn)t = qn(qn+1 - qn—l)
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Geometric realizations of Completely Integrable Systems

Let v : R? — R3 satisfy the Vortex filament flow equation
Ye =«kB

where B is the binormal, k the curvature and T the torsion of y. If ¢ = KeideX,
it satisfies

: i
be = i+ S1OPD
the Nonlinear Schrédinger equation (NLS) (Hasimoto, 72).
We say the Vortex Filament flow is an Euclidean realization of NLS.

Let u, € R? be a polygon in the centro-affine plane satisfying the tangential flow

L ) (Un+1 — Up—1)

Uply = ————
(1) det(up—1, Ups1

Let g, be the cross ratio of up_1, Upy Upi1, Unyo, and assume det(u,, Upr1) =1
for all n. Then g, satisfies the Volterra equation

(qn)t = qn(qn+1 - qn—1)~

The tangential flow is a centro-affine realization of the Volterra model.
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Moving frames and invariants for curves and polygons

Let a Lie group G act on M, and let C*°(R, M) be the space of smooth,
parametrized curves
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Moving frames and invariants for curves and polygons

Let a Lie group G act on M, and let C*°(R, M) be the space of smooth,
parametrized curves. y € C°(R, M) has a monodromy if there exists T € R (the
period) and m € G (the monodromy) such that y(x + T) = m - y(x) for any x
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Moving frames and invariants for curves and polygons

Let a Lie group G act on M, and let C*°(R, M) be the space of smooth,

parametrized curves. y € C°(R, M) has a monodromy if there exists T € R (the
period) and m € G (the monodromy) such that y(x + T) = m - y(x) for any x.
The group acts naturally on the jet space g-y*) = (g-v)¥), k=0,1,...
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Moving frames and invariants for curves and polygons

Let a Lie group G act on M, and let C*°(R, M) be the space of smooth,
parametrized curves. y € C°(R, M) has a monodromy if there exists T € R (the
period) and m € G (the monodromy) such that y(x + T) = m - y(x) for any x.
The group acts naturally on the jet space g - y*) = (g-v)¥), k=0,1,.... Fels
and Olver’s moving frames definitions:
Definition
A (left or right invariant) moving frame of order k is an equivariant map

p: JH (R M) =G

with respect to the prolonged action of G on J¥)(R, M) and the (left or right)
action of G on itself
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Moving frames and invariants for curves and polygons

Let a Lie group G act on M, and let C*°(R, M) be the space of smooth,
parametrized curves. y € C°(R, M) has a monodromy if there exists T € R (the
period) and m € G (the monodromy) such that y(x + T) = m - y(x) for any x.
The group acts naturally on the jet space g - y*) = (g-v)¥), k=0,1,.... Fels
and Olver’s moving frames definitions:
Definition
A (left or right invariant) moving frame of order k is an equivariant map

p: JH (R M) =G

with respect to the prolonged action of G on J¥)(R, M) and the (left or right)
action of G on itself.

Definition

A differential invariant for parametrized curves is a map
[:JW(R,M) =R

such that /(g - %) = I(x), for any g € G.

v

= = = = o
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A polygon is a bi-infinite sequence u:7Z — M
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A polygon is a bi-infinite sequence v :7Z — M. A twisted polygon is a polygon
such that u(i+ N) = ujy .y = p- u; for any i € Z, where i € G is the monodromy
and N € Z the period
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A polygon is a bi-infinite sequence v :7Z — M. A twisted polygon is a polygon
such that u(i+ N) = ujy .y = p- u; for any i € Z, where i € G is the monodromy
and N € Z the period. The set of twisted polygons with fixed monodromy can be
identified with MV and G acts on MV via the diagonal action (g - u); =g - u;
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A polygon is a bi-infinite sequence v :7Z — M. A twisted polygon is a polygon
such that u(i+ N) = ujy .y = p- u; for any i € Z, where i € G is the monodromy
and N € Z the period. The set of twisted polygons with fixed monodromy can be
identified with MV and G acts on MV via the diagonal action (g - u); = g - u;.
Mansfield, MB and Wang's discrete moving frames definitions:
Definition
A (left or right invariant) moving frame along polygons is an equivariant map

p: MN — GN

with respect to the action of G on MV and the (left or right) diagonal action of
G on GV
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A polygon is a bi-infinite sequence v :7Z — M. A twisted polygon is a polygon
such that u(i+ N) = ujy .y = p- u; for any i € Z, where i € G is the monodromy
and N € Z the period. The set of twisted polygons with fixed monodromy can be
identified with MV and G acts on MV via the diagonal action (g - u); = g - u;.
Mansfield, MB and Wang's discrete moving frames definitions:
Definition
A (left or right invariant) moving frame along polygons is an equivariant map

p: MN — GN
with respect to the action of G on MV and the (left or right) diagonal action of
G on GV.

Definition

A difference invariant for N-twisted polygons is a map
I: MN = R (or others like G, g, etc)

such that /(g - %) = I(x), for any g € G.
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A polygon is a bi-infinite sequence v :7Z — M. A twisted polygon is a polygon
such that u(i+ N) = ujy .y = p- u; for any i € Z, where i € G is the monodromy
and N € Z the period. The set of twisted polygons with fixed monodromy can be
identified with MV and G acts on MV via the diagonal action (g - u); = g - u;.
Mansfield, MB and Wang's discrete moving frames definitions:
Definition
A (left or right invariant) moving frame along polygons is an equivariant map

p: MN — GN
with respect to the action of G on MV and the (left or right) diagonal action of
G on GV.

Definition

A difference invariant for N-twisted polygons is a map
I: MN = R (or others like G, g, etc)

such that /(g - %) = I(x), for any g € G.

Note: if p is a left (res. right) moving frame, so is pg (resp. gp), g invariant .
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Maurer-Cartan equations
Definition

(Fels, Olver) Let p be a left (resp. right) moving frame for smooth curves
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Maurer-Cartan equations
Definition

(Fels, Olver) Let p be a left (resp. right) moving frame for smooth curves. Its left
(resp. right) derivative wrt the parameter x is an element of the Lie algebra
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Maurer-Cartan equations
Definition
(Fels, Olver) Let p be a left (resp. right) moving frame for smooth curves. Its left

(resp. right) derivative wrt the parameter x is an element of the Lie algebra. If
G C GL(m) the left (resp. right) Maurer-Cartan matrix is given by

K=p 'px€ C®(S',g) (resp. pxp ')
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Maurer-Cartan equations
Definition
(Fels, Olver) Let p be a left (resp. right) moving frame for smooth curves. Its left
(resp. right) derivative wrt the parameter x is an element of the Lie algebra. If
G C GL(m) the left (resp. right) Maurer-Cartan matrix is given by

K=p 'p. € C(S%0) (resp. pxp )

and its entries generate all differential invariants under minimal assumptions
(Hubert 07).

Note: if p — pg then K — g 1g, + g 1Kg, the left gauge action
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Maurer-Cartan equations
Definition
(Fels, Olver) Let p be a left (resp. right) moving frame for smooth curves. Its left
(resp. right) derivative wrt the parameter x is an element of the Lie algebra. If
G C GL(m) the left (resp. right) Maurer-Cartan matrix is given by
K=p 'p. € C(S%0) (resp. pxp )

and its entries generate all differential invariants under minimal assumptions
(Hubert 07).

Note: if p — pg then K — g lg, + g 1Kg, the left gauge action.

Theorem
(MB, 08,10) Assume M = G/H, H C G isotropic subgroup of p = [H] € M

v
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Maurer-Cartan equations
Definition
(Fels, Olver) Let p be a left (resp. right) moving frame for smooth curves. Its left
(resp. right) derivative wrt the parameter x is an element of the Lie algebra. If
G C GL(m) the left (resp. right) Maurer-Cartan matrix is given by
K=p 'p. € C(S%0) (resp. pxp )

and its entries generate all differential invariants under minimal assumptions
(Hubert 07).

Note: if p — pg then K — g lg, + g 1Kg, the left gauge action.

Theorem

(MB, 08,10) Assume M = G/H, H C G isotropic subgroup of p = [H] € M.
Under minimal technical assumptions, the equivalence classes of curves up to the
geometric action of G can be identified with an open (often dense) subset of

C=(S',9)/C®(SY H)

v
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Maurer-Cartan equations
Definition
(Fels, Olver) Let p be a left (resp. right) moving frame for smooth curves. Its left
(resp. right) derivative wrt the parameter x is an element of the Lie algebra. If
G C GL(m) the left (resp. right) Maurer-Cartan matrix is given by
K=p 'p. € C(S%0) (resp. pxp )

and its entries generate all differential invariants under minimal assumptions
(Hubert 07).

Note: if p — pg then K — g lg, + g 1Kg, the left gauge action.

Theorem

(MB, 08,10) Assume M = G/H, H C G isotropic subgroup of p = [H] € M.
Under minimal technical assumptions, the equivalence classes of curves up to the
geometric action of G can be identified with an open (often dense) subset of

C=(S',9)/C®(SY H)

where C*°(S', H) acts on C®(S1,g) via the left (resp. right) gauge action.
v
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Maurer-Cartan equations

Definition

(Mansfield, MB, Wang, 13) Let p be a left (resp. right) moving frame for twisted
polygons
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Maurer-Cartan equations

Definition

(Mansfield, MB, Wang, 13) Let p be a left (resp. right) moving frame for twisted
polygons. We define the left (resp. right) Maurer-Cartan matrix for p to be the
bi-infinite periodic sequence in G

Kn=p,"0Pni1 € G (resp. ppi1p, ).
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Maurer-Cartan equations

Definition

(Mansfield, MB, Wang, 13) Let p be a left (resp. right) moving frame for twisted
polygons. We define the left (resp. right) Maurer-Cartan matrix for p to be the
bi-infinite periodic sequence in G

Kn=p,"0Pni1 € G (resp. ppi1p, ).

The Maurer-Cartan generate all polygonal invariants under minimal assumptions

v
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Maurer-Cartan equations

Definition

(Mansfield, MB, Wang, 13) Let p be a left (resp. right) moving frame for twisted
polygons. We define the left (resp. right) Maurer-Cartan matrix for p to be the
bi-infinite periodic sequence in G

Kn=p,"0Pni1 € G (resp. ppi1p, ).

The Maurer-Cartan generate all polygonal invariants under minimal assumptions.

v

Note: if p, — pngn, & invariant, then K, — g, 1K,g,+1, the discrete left gauge
action
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Maurer-Cartan equations

Definition

(Mansfield, MB, Wang, 13) Let p be a left (resp. right) moving frame for twisted
polygons. We define the left (resp. right) Maurer-Cartan matrix for p to be the
bi-infinite periodic sequence in G

Kn=p,"0Pni1 € G (resp. ppi1p, ).

The Maurer-Cartan generate all polygonal invariants under minimal assumptions.

v

Note: if p, — pngn, & invariant, then K, — g, 1K,g,+1, the discrete left gauge
action.

Theorem

(Mansfield, MB, Wang, 13) Assume M = G/H, H subgroup of G and isotropic
group of p € M. The set of left (resp. right) N-periodic Maurer-Cartan matrices
can be identified with an open subset (often dense) of

GN/H"
HN acts on GV via the left (resp. right) gauge action (hn,gn) — h>ghhni1.

y.
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Hamiltonian structures
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),
q,peR™ s

- oh
q: = %

- oh
Pt = _aTl
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),
q,peR™ s

- oh
q: = %

- oh
Pt = _aTl

q\ (0 [ ) . 0
or (pt><—/ 0> Vh  with symplectic structure <—/ K
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),

q,p € R" is
| oh
q: — %
oh
Pt _aiq
q\ (0 [ ) . 0
or (pt> = (—I 0> Vh  with symplectic structure <—/ K

If a system is defined by v, = PVh
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),
q,peR™ s

- oh
q: = %

- oh
Pt = _aTl

q\ (0 [ ) . 0
or (pt>(—/ 0> Vh  with symplectic structure <—/ K

If a system is defined by v; = PV h we say it is Hamiltonian with Hamiltonian
function h(v) if

{f,g}(v) = (Vf) PV.g
is a Poisson bracket:
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),
q,peR™ s

- oh
q: = %

- oh
Pt = _aTl

q\ (0 [ ) . 0
or (pt>(—/ 0> Vh  with symplectic structure <—/ K

If a system is defined by v; = PV h we say it is Hamiltonian with Hamiltonian
function h(v) if

{f,g}(v) = (Vf) PV.g
is a Poisson bracket:

{f, g} =g, f}
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),
q,peR™ s

- oh
q: = %

- oh
Pt = _aTl

q\ (0 [ ) . 0
or (pt>(—/ 0> Vh  with symplectic structure <—/ K

If a system is defined by v; = PV h we say it is Hamiltonian with Hamiltonian
function h(v) if

{f,g}(v) = (Vf) PV.g
is a Poisson bracket:

{f)g}:_{g’f} and {f+g)h}:{f»h}+{g)h};
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),
q,peR™ s

- oh
q: = %

- oh
Pt = _aTl

q\ (0 [ ) . 0
or (pt>(—/ 0> Vh  with symplectic structure <—/ K

If a system is defined by v; = PV h we say it is Hamiltonian with Hamiltonian
function h(v) if

{f,g}(v) = (Vf) PV.g
is a Poisson bracket:
{f)g}: _{g$ f} and {f+g) h}:{f» h}+{g) h},
A Leibnitz's rule {fg, h} = f{g, h} + g{f, h}
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Hamiltonian structures

The most common Hamiltonian system, with Hamiltonian function h(q, p),
q,peR™ s

- oh
q: = %

- oh
Pt = _aTl

q\ (0 [ ) . 0
or (pt>(—/ 0> Vh  with symplectic structure <—/ K

If a system is defined by v; = PV h we say it is Hamiltonian with Hamiltonian
function h(v) if

{f,g}(v) = (Vf) PV.g
is a Poisson bracket:
{f)g} = _{g$ f} and {f+g) h} :{f» h}+{g) h},
H Leibnitz's rule {fg, h} = f{g, h} + g{f, h}
and Jacobi's property {f,{h,g}}+{h,{g.f}}+{g.{f.,h}}=0.
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The same definition applies to Hamiltonian PDEs
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The same definition applies to Hamiltonian PDEs . They are of the form
Zy = Péf

with z(t,x) € R™ smooth and P a linear differential operator, F(z) = Isl f(z)dx
the Hamiltonian, and d%lezo}"(z +ey) = f51<6F,y>dx the variational derivative
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The same definition applies to Hamiltonian PDEs . They are of the form
Zy = Péf

with z(t,x) € R™ smooth and P a linear differential operator, F(z) = Isl f(z)dx
the Hamiltonian, and d%lezo}"(z +ey) = f51<6F,y>dx the variational derivative.
The Poisson bracket would be

(F,6)(2) =J (8, P5G) d

51
satisfying #1 and Jacobi.
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The same definition applies to Hamiltonian PDEs . They are of the form
= PoF

with z(t,x) € R™ smooth and P a linear differential operator, F(z fsl z)dx
the Hamiltonian, and Elezo}"(z +ey)= Isl OF, y)dx the varlatlonal derivative.
The Poisson bracket would be

(F.G)(z) = Ll (5F, P5G) dx

satisfying #1 and Jacobi.
It also applies to differential-difference Hamiltonian systems of the form

(Vn)t = Pnénh

with v, a periodic bi-infinite sequence, h: MV — R the Hamiltonian, and §,h its
variational derivative in the n-direction
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The same definition applies to Hamiltonian PDEs . They are of the form
= PoF

with z(t,x) € R™ smooth and P a linear differential operator, F(z fsl z)dx

the Hamiltonian, and Elezo}"(z +ey)= Isl OF, y)dx the varlatlonal derivative.
The Poisson bracket would be

(F.G)(z) = Ll (5F, P5G) dx

satisfying #1 and Jacobi.
It also applies to differential-difference Hamiltonian systems of the form

(Vn)t = Pnénh

with v, a periodic bi-infinite sequence, h: MV — R the Hamiltonian, and §,h its
variational derivative in the n-direction. The Poisson bracket (satisfying #1 and
Jacobi) would be defined as

{FyhH (V) =D (8nf, Pabnh)

with (;) an inner product and P, a linear difference operator.
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Examples

Korteweg de Vries equation

3 1 1
Vt:Vxxx+3VVx:(d +Vi+iv)57v2, hZEJ V2
st

dx3 dx  dx 2
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Examples

Korteweg de Vries equation

@ d d .1,

1
Vt:Vxxx+3VVx:(ﬁ+ — 4+ —v)d=ve, hzij'lvz.
S

de dx 2

Volterra equation

(uth - un(un+1 - Un—l) or if Un = PnPn—1

(P)e = P2(Pns1—pa—1) =po(T —T ')pi 8lnp,, h=> Inp,
n
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Examples

Korteweg de Vries equation

d3 d d 1 1
VA AT SV N T )
dx3+vdx+dxv) 2" 2J;V

Vi = Vi + 3vvy = (

Volterra equation

(un)t = un(”n—}—lfun—l) or if up=ppppr_1

(pn)e = PE(PnH—Pnfl):Pi(T—Tfl)pE51np,,, hzZlnp,,.
n

Toda Lattice

(Un)tt: eXp(un—l - Un) - eXp(un - Un+1)

or if gn=(Un)e, Pn=exp(us—uUns1)
Pn pn(qn - qn+1) pn(Til - T)pn pn(1 - T)qn ) z
— = 6 ny h - ne
(qn> t ( Pn—1 — Pn ) <Qn(1 - Tﬁl)pn Tﬁlpn — p,,'T q - q
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BiHamiltonian systems

Definition
Two Hamiltonian structures defined by Poisson brackets {, }; and {, }» are
compatible, whenever {f, h} = {f, h}; + {f, h}» is also Poisson.
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BiHamiltonian systems

Definition
Two Hamiltonian structures defined by Poisson brackets {, }; and {, }» are
compatible, whenever {f, h} = {f, h}; + {f, h}» is also Poisson.

Arnold-Liouville's theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville's integrability.
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BiHamiltonian systems

Definition
Two Hamiltonian structures defined by Poisson brackets {, }; and {, }» are
compatible, whenever {f, h} = {f, h}; + {f, h}» is also Poisson.

Arnold-Liouville's theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville's integrability. When the
system is biHamiltonian, there are methods to generate enough preserved
quantities.
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BiHamiltonian systems

Definition
Two Hamiltonian structures defined by Poisson brackets {, }; and {, }» are
compatible, whenever {f, h} = {f, h}; + {f, h}» is also Poisson.

Arnold-Liouville's theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville's integrability. When the
system is biHamiltonian, there are methods to generate enough preserved
quantities.

d? d d 1,

+v—+ —v)dov

KdV = ' = —_—
(KdV) vt = viux + 3wy, (dx3 o T8
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BiHamiltonian systems

Definition
Two Hamiltonian structures defined by Poisson brackets {, }; and {, }» are
compatible, whenever {f, h} = {f, h}; + {f, h}» is also Poisson.

Arnold-Liouville's theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville's integrability. When the
system is biHamiltonian, there are methods to generate enough preserved
quantities.

d? d d 1
(KdV) Vtzvxxx+3VVx = (T+ df“'df )65 2
_d 3 L) — 1,
= (et 517 = B(—5uE + V)
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BiHamiltonian systems

Definition
Two Hamiltonian structures defined by Poisson brackets {, }; and {, }» are
compatible, whenever {f, h} = {f, h}; + {f, h}» is also Poisson.

Arnold-Liouville's theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville's integrability. When the
system is biHamiltonian, there are methods to generate enough preserved
quantities.

@ d . d o1,
(KdV) Vi = Vyxx T+ 3VVX = (% + V& + df )65
_d 3, 1,
= a(vxx + 5V )= ( 2v )
(mVol) (pn)e = Pa(Pns1 — Po1) = po(T =T ")p; 51n Pn
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BiHamiltonian systems

Definition
Two Hamiltonian structures defined by Poisson brackets {, }; and {, }» are
compatible, whenever {f, h} = {f, h}; + {f, h}» is also Poisson.

Arnold-Liouville's theorem: if the system has enough preserved quantities (half
the dimension of the manifold if finite), then the system can be solved by
quadratures. This idea of integration is called Liouville's integrability. When the
system is biHamiltonian, there are methods to generate enough preserved
quantities.

@ d . d o1,
(KdV) Vi = Vyxx T+ 3VVX = (% + V& + df )65
_d 3, 1,
= a(vxx + 5V )= ( 2v )
(mVol) (pn)e = Pa(Pns1 — Po1) = po(T =T ")p; 51n Pn

pn(Tf 1)(T+ 1)71pn 6(,0,7,0,,,1)
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

Semisimple Lie groups have natural Poisson structures both on g* (continuous)
and on the group (discrete)
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-
Poisson brackets on C*°(RR, g) and Poisson Lie Groups

Semisimple Lie groups have natural Poisson structures both on g* (continuous)
and on the group (discrete). If F: C*(R,g) — R, then 8F € C*®(R,g*), g" ~ g

d
(T|e=0-7:(5+ €n) :J (8¢ Fym)
€ s1
forallneg
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-
Poisson brackets on C*°(RR, g) and Poisson Lie Groups

Semisimple Lie groups have natural Poisson structures both on g* (continuous)
and on the group (discrete). If F: C*(R,g) — R, then 8F € C*®(R,g*), g" ~ g

d
E|e=0]:(a+ en) = Ll (8¢ Fym)

for all 1 € g. The bracket

(7, HIE) = j

Sl<(6£]:)x + &0 F],0:H) (1)

is Poisson, and its symplectic leaves are gauge orbits.
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

Semisimple Lie groups have natural Poisson structures both on g* (continuous)
and on the group (discrete). If F: C*(R,g) — R, then 8F € C*®(R,g*), g" ~ g

d
Jele=oF (&4 en) = J (0eF,m)
€ s1
for all 1 € g. The bracket
(FHE) = || (86F),+ 567, 5:7) (1
is Poisson, and its symplectic leaves are gauge orbits.
Theorem

(MB, 10) Assume M = G/H, H C G isotropic group of p € M
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

Semisimple Lie groups have natural Poisson structures both on g* (continuous)
and on the group (discrete). If F: C*(R,g) — R, then 8F € C*®(R,g*), g" ~ g

d
Jele=oF (&4 en) = J (0eF,m)
€ s1
for all 1 € g. The bracket
(FHE) = || (86F),+ 567, 5:7) (1
is Poisson, and its symplectic leaves are gauge orbits.
Theorem

(MB, 10) Assume M = G/H, H C G isotropic group of p € M. Under some
technical assumptions, the Poisson bracket (1) can be reduced to the quotient

C(S1,9)/C=(S, H).

Mari Beffa (UW-Madison) Invariants to Integrable Systems Halifax, August 2022 11/16



Poisson brackets on C*°(RR, g) and Poisson Lie Groups

IfF:G—R
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by g d
Jole—oF(exp(ed)g) = (Vg7 &), —le—oF(gexp(ed)) = (Vg F, &)

forall {eg
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by g d
Jole—oF(exp(ed)g) = (Vg7 &), —le—oF(gexp(ed)) = (Vg F, &)

forall £ € g. If F: GN — R, define VF = (V,F)
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by g d
Jole—oF(exp(ed)g) = (Vg7 &), —le—oF(gexp(ed)) = (Vg F, &)

forall £ € g. If F: GN — R, define VF = (V,F). Let Tu, = up41 be the shift
operator
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Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by g d
Jole—oF(exp(ed)g) = (Vg7 &), —le—oF(gexp(ed)) = (Vg F, &)

forall £ € g. If F: GN — R, define VF = (V,F). Let Tu, = up41 be the shift
operator, and r an R-matrix
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-
Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by

d d
Jcle=oF (exp(et)g) = (Vg F &), ——le=oF(gexp(ed)) = (V. F,E)

forall £ € g. If F: GN — R, define VF = (V,F). Let Tu, = up41 be the shift
operator, and r an R-matrix. The following is a Poisson bracket on G"

N
H(VaF AVH)+ Y r(V FAVH)

n=1

{F, Hig) ==

M= 1[\’]2

= ((Ten(vV,Fevan) + i (TenvHe V,F).

n

Il
-

The bracket is Poisson, and its symplectic leaves are (discrete) gauge orbits
(Semenov-Tian-Shansky, 85).
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-
Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by g d
Jole—oF(exp(ed)g) = (Vg7 &), —le—oF(gexp(ed)) = (Vg F, &)

forall £ € g. If F: GN — R, define VF = (V,F). Let Tu, = up41 be the shift
operator, and r an R-matrix. The following is a Poisson bracket on G"

N N
{(FyH)g) =D _ r(VaF AVH)+ Y r(V,FAVH)
rlrvzl n=1 ., (2)
=3 ((Tenv,Fav.H)+ Z r((TeN(ViHe V,F)) .
=1 n=1

n

The bracket is Poisson, and its symplectic leaves are (discrete) gauge orbits
(Semenov-Tian-Shansky, 85).

Theorem

(MB, 14) Assume M = G/H, H C G isotropic group of p € M
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-
Poisson brackets on C*°(RR, g) and Poisson Lie Groups

If F: G — R, then VF,V'F € g* ~ g, the left and right gradients, are defined
by g d
Jole—oF(exp(ed)g) = (Vg7 &), —le—oF(gexp(ed)) = (Vg F, &)

forall £ € g. If F: GN — R, define VF = (V,F). Let Tu, = up41 be the shift
operator, and r an R-matrix. The following is a Poisson bracket on G"

N N
{(FyH)g) =D _ r(VaF AVH)+ Y r(V,FAVH)
rlrvzl n=1 ., (2)
=3 ((Tenv,Fav.H)+ Z r((TenvHe V).

n

A

The bracket is Poisson, and its symplectic leaves are (discrete) gauge orbits
(Semenov-Tian-Shansky, 85).

Theorem
(MB, 14) Assume M = G/H, H C G isotropic group of p € M. Under some
technical assumptions, the Poisson bracket (2) can be reduced to the quotient
GN/HN.
Invariants to Integrable Systems Halifax, August 2022 12/16




(MB and Wang, 13) The equations

i1 i+1
a
1 a .

(a)e= 2 - — i=12...,m-1

n41»1 "711-
my,

(ag)e = oI !

n+1 n—m

Halifax, August 2022 13/16
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(MB and Wang, 13) The equations

i1 i+1
. a
1 a .
(a)e= 2 - — i=12...,m-1
n41»1 "711-
my,
(ag)e = oI !
n+1 n—m

are a discretization of so called Generalized KdV systems

Halifax, August 2022 13/16
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(MB and Wang, 13) The equations

. i+1 i+1
(ah)e = L — %,
an41»1 i

)t = p el s
n+1 n—

i=1,2,--- ,m—1

m

are a discretization of so called Generalized KdV systems . They have a
projective/ R™ centro-affine geometric realization of the form

a2, a am
n— n— n—
(Yn)e = _71'Yn — T Ynt1— 1 Ynt2 = — 1 Yntm—1t+ T Ynt+m-
m+ a1 a1 a1 a1

Halifax, August 2022 13/16
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(MB and Wang, 13) The equations

. i+1 i+1
(ah)e = L — %,
anTl i

)t = p el s
n+1 n—

i=1,2,--- ,m—1

m

are a discretization of so called Generalized KdV systems . They have a
projective/ R™ centro-affine geometric realization of the form

2 3 m
( _ m a1 a1 ap 1
Ynlt = _71'Yn — T Ynt1— 1 Ynt2 = — 1 Yntm—1t+ T Ynt+m-
m+ a1 a1 a1 a1

Case m=2: if Tak =ak,,and R =T 141+ T (invertible if N # 3s for any s)

T2 -2T7 T-7T2 oh
o of af n = “n dal
(Fohbla) =Y (3 ) ( o ) ()

n

>

@

Halifax, August 2022 13/16
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|
(MB and Wang, 13) The equations

A it

. i .
(@)e=3L % i-12.- m—1
n+1 n—i
(anm)t: 11 - 11
a a
n+1 n—m

are a discretization of so called Generalized KdV systems . They have a
projective/ R™ centro-affine geometric realization of the form

2 3 m
m an—1 an—1 an—1 1
(Yn)e = _71'Yn — T Ynt1— 1 Ynt2 = — 1 Yntm—1t+ T Ynt+m-
m+ a1 a1 a1 a1

Case m=2: if Tak =ak,,and R =T 141+ T (invertible if N # 3s for any s)

T2 27 T-T732 ah
(f,hala) = (25 25) ( ) (7)

T2 71 0 242

o of AR T - T Hat adr 17 hHa? aaahl
{f,hh(a) = z (33,11 aa%]) 21 1 11, 251 1.2 of
a R (T —1a, Ta, —a,T ~+a,R (T —-T a, 922

n
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons

(R™N invariant under the centro-affine group preserving constant arc-length
t=det(Yn, Ynt1y--esVnim—1) =1
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons
(R™N invariant under the centro-affine group preserving constant arc-length
€ =det(Yny Yni1y---yYnrm_1) = 1. They are of the form X = {X,}V_,.
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons
(R™N invariant under the centro-affine group preserving constant arc-length
€ =det(Vny Ynit1y---yYnrm_1) = 1. They are of the form X = {X,}V_,. Define
the operator

Ly=a+apT + - +arTm—T7m1
with L,(y,) =0
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons
(R™N invariant under the centro-affine group preserving constant arc-length

€ =det(Vny Ynit1y---yYnrm_1) = 1. They are of the form X = {X,}V_,. Define
the operator

Ly=a+apT + - +arTm—T7m1
with L,(v,) =0 . If n ={n,}is an invariant 1-form on polygons, define
dim = {dm,} to be the 2-form

dina(X,Y) = Xnn(L(Y)) = ¥YNa(L(X)) = na(XL(Y) = YL(X)).
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons
(R™N invariant under the centro-affine group preserving constant arc-length

€ =det(Vny Ynit1y---yYnrm_1) = 1. They are of the form X = {X,}V_,. Define
the operator

Ln = ag+a}17ﬂ+...+anm7‘m77~m+1

with L,(v,) =0 . If n ={n,}is an invariant 1-form on polygons, define
dim = {dm,} to be the 2-form

dina(X,Y) = Xnn(L(Y)) = ¥YNa(L(X)) = na(XL(Y) = YL(X)).

(If L =1 we would have the standard differential)
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons
(R™N invariant under the centro-affine group preserving constant arc-length
€ =det(Vny Ynit1y---yYnrm_1) = 1. They are of the form X = {X,}V_,. Define
the operator

Ly=a+apT + - +arTm—T7m1

with L,(v,) =0 . If n ={n,}is an invariant 1-form on polygons, define
dim = {dm,} to be the 2-form

dima(X,Y) = X0, (L(Y)) = YNa(L(X)) —1a(XL(Y) — YL(X)).
(If L =1 we would have the standard differential). Let © ={6,} be the 1-form

en(X) (V) = det(menJrl) e »yner)-
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Lifting the biHamiltonian picture to projective polygons

Consider invariant vector fields in the space of centro-affine twisted polygons
(R™N invariant under the centro-affine group preserving constant arc-length

€ =det(Vny Ynit1y---yYnrm_1) = 1. They are of the form X = {X,}V_,. Define
the operator

Ln = ag+a}17ﬂ+...+anm7‘m77~m+1

with L,(v,) =0 . If n ={n,}is an invariant 1-form on polygons, define
dim = {dm,} to be the 2-form

dima(X,Y) = X0, (L(Y)) = YNa(L(X)) —1a(XL(Y) — YL(X)).
(If L =1 we would have the standard differential). Let © ={6,} be the 1-form

en(X) (V) = det(menJrl) e »yner)-
Finally, define

wy=) db, wy=) do,
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Theorem

(Calini, MB, 22) Both wy and w, are closed forms on the space of projective
vector fields preserving £, (i.e., they are pre-symplectic).
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Theorem

(Calini, MB, 22) Both wy and w, are closed forms on the space of projective
vector fields preserving £, (i.e., they are pre-symplectic).

Theorem

(Calini, MB, 22) If f is a function of the invariants a', then there exists a explicit
vector field X' such that:
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Theorem

(Calini, MB, 22) Both wy and w, are closed forms on the space of projective
vector fields preserving £, (i.e., they are pre-symplectic).

Theorem

(Calini, MB, 22) If f is a function of the invariants a', then there exists a explicit
vector field X' such that:

w1 (Xf, X" ={f, h}, is a Poisson bracket
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Theorem

(Calini, MB, 22) Both wy and w, are closed forms on the space of projective
vector fields preserving £, (i.e., they are pre-symplectic).

Theorem

(Calini, MB, 22) If f is a function of the invariants a', then there exists a explicit
vector field X' such that:

w1 (Xf, X" ={f, h}, is a Poisson bracket
A w»(Xf,X") ={f, h}, is a Poisson bracket.
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Theorem

(Calini, MB, 22) Both wy and w, are closed forms on the space of projective
vector fields preserving £, (i.e., they are pre-symplectic).

Theorem

(Calini, MB, 22) If f is a function of the invariants a', then there exists a explicit
vector field X' such that:

w1 (Xf, X" ={f, h}, is a Poisson bracket
B w, (X", X") = {f, h}, is a Poisson bracket.

Corollary

(Calini, MB, 22) The Hamiltonian structures {,}; and {,}» are compatible if, and
only if dw, =), d?0,=0
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Theorem

(Calini, MB, 22) Both wy and w, are closed forms on the space of projective
vector fields preserving £, (i.e., they are pre-symplectic).

Theorem

(Calini, MB, 22) If f is a function of the invariants a', then there exists a explicit
vector field X' such that:

w1 (Xf, X" ={f, h}, is a Poisson bracket
A w»(Xf,X") ={f, h}, is a Poisson bracket.

Corollary

(Calini, MB, 22) The Hamiltonian structures {,}; and {,}» are compatible if, and
only if dw, = Zn d20,, = 0. The discretizations of generalized KdV are
biHamiltonian and Liouville-integrable.
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