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Nearly parallel G2-structures

A G2-structure on a 7-manifold M is a 3-form φ that is non-degenerate in a specific
algebraic sense. A G2-structure φ on M induces a Riemannian metric gφ and a
volume form volφ on M.

A G2-structure φ is called nearly-parallel if it satisfies the first-order equation:

dφ = 4 ∗φφ.
Motivation for the study of nearly parallel G2-structures comes from holonomy
theory: nearly parallel G2-manifolds are models for conically singular mani-
folds with holonomy Spin(7). More precisely, an 8-dimensional Riemannian cone(
M × R+, gc = dt2 + t2gM

)
has Hol(gc) ⊂ Spin(7) if and only if M admits a nearly

parallel G2-structure with gM = gφ.

Manifolds with holonomy contained in Spin(7) are Ricci flat, and it follows that if φ
is nearly parallel then gφ is Einstein with positive scalar curvature.

The prototypical nearly parallel G2-manifold is the 7-sphere S7 endowed with its
Spin(7)-invariant G2-structure, which induces the round metric. Other examples
include Sasaki-Einstein 7-manifolds, as well as 3-Sasakian 7-manifolds and their
squashings, described later.

There is a classification of homogeneous nearly parallel G2-structures. All examples
are either 3-Sasakian, squashed 3-Sasakian, or Sasaki-Einstein, except for one outlier:
the Berger space SO(5)/SO(3).

Associative submanifolds

An oriented 3-dimensional submanifold N of a manifold M with G2-structure φ is
called an associative submanifold if φ |N= vol |N .

If φ is nearly parallel, then the cone on N is a calibrated submanifold of the cone on
M for the Cayley calibration Φ = r3 dr∧φ+ r4 ∗φφ, so N is a minimal submanifold
of M, although in general it will not be volume minimizing. Therefore, associative
submanifolds in nearly parallel G2-manifolds are models for conically singular
Cayley submanifolds.

Further motivation for the study of associative submanifolds comes from the program
of Donaldson and Segal to construct invariants of G2-structures by combining counts
of associative submanifolds and G2-instantons.

The associative condition is a non-linear first-order PDE system. Local existence of
solutions follows from an application of the Cartan-Kähler theorem, but in general it
is hard to produce global solutions.

Our approach: ruled submanifolds

A natural condition on a submanifold is that it be ruled (foliated) by some special
class of curves in the ambient space. The study of surfaces in R3 ruled by lines is a
classical topic in differential geometry. For instance, Catalan proved in 1842 that the
helicoid is the only non-planar ruled minimal surface in R3.

In the context of calibrated geometry and special holonomy, Bryant, Fox, Lotay, and
Joyce have studied ruled calibrated submanifolds of Euclidean spaces and spheres.
In these cases the choice of ruling curve is straightforward: lines or circles.

We apply similar techniques to study associative submanifolds in a nearly parallel
G2-manifold M . The first difficulty to overcome is to determine an appropriate class
of ruling curves. Motivated by the general theory, we choose ruling curves that are
also geodesics, but the exact choice depends on the specific ambient manifold M we
are working with.

With a specific choice of ruling curves in hand, Let N denote the space of these
curves and let Γ denote the map that sends a point p ∈ N to the curve C ⊂ M. A
surface S ⊂ N then gives rise to a 3-fold Γ(S) ⊂ M.

Key question: What conditions on S ⊂ N ensure that the 3-fold Γ(S) ⊂ M is
associative?

Technical detail: singularities

Our main goal is to construct smooth associatives submanifolds n a nearly parallel
G2-manifold M using the process described above. However, the 3-fold Γ(S) may be
singular even when the surface S ⊂ N is smooth.

This issue already appears in the classical case of ruled submanifolds in R3. For
instance, a cone in R3 is the image of a smooth curve in the space of lines in R3, but
it has a singularity at its apex.

We deal with this issue by identifying the geometric properties of S that cause singu-
larities to occur in Γ(S) and constructing surfaces S ⊂ N without these properties.
On the other hand, there is interest in examples of singular associative submanifolds
and our approach also allows us to construct ruled associatives with certain kinds of
singularities.

Associatives in squashed 3-Sasakian manifolds

A Riemannian 7-manifold is said to be 3-Sasakian if its metric cone has holonomy
contained in Sp(2). Every smooth 3-Sasakian manifold M can be realized as a the
total space of an S3 or SO(3)-bundle over a positive self-dual Einstein orbifold X
and M is also a circle bundle over the twistor space Z of X.

We have Sp(2) ⊂ Spin(7), so any 3-Sasakian 7-manifold carries a nearly-parallel
G2-structure. Varying the 3-form φ by scaling the fibers of M → X, one obtains
a 1-parameter family of G2-structures, exactly one other of which is nearly-parallel.
This alternative nearly-parallel G2-structure is called the squashed structure on M.

The ruling curves we consider are the geodesics inM tangent to the fibers ofM → X.
We call these Hopf circles. The space of Hopf circles inM is diffeomorphic to Z×S2.

Theorem: There is an almost complex structure J on Z × S2 such that any
Hopf-ruled associative in M is locally the Γ-image of some J -holomorphic curve
S. Conversely, for each J -holomorphic curve S in Z × S2 that does not lie in an
S2 × S2-fiber over X, there is a discrete subset D ⊂ S ⊂ S such that Γ(S \D) is a
Hopf-ruled associative submanifold of M.

The prime examples of 3-Sasakian 7-manifolds are the 7-sphere S7 and the Aloff-
Wallach space N1,1. In both cases, we are able to construct many J -holomorphic
curves with D = ∅ and produce smooth associative submanifolds.

Associatives in the Berger space

The group SO(3) acts irreducibly on R5 ∼= Sym2
0(R3), giving rise to a non-standard

inclusion SO(3) ⊂ SO(5). The Berger space B is the resulting homogeneous space
SO(5)/SO(3). The Berger space has a number of remarkable properties: it is an
isotropy irreducible space, the homogeneous metric on B has positive curvature, and
topologically B is an S3-bundle over S4 and a rational homology sphere.

B carries a unique SO(5)-invariant nearly-parallel G2-structure. In fact, the cone on
B was the first known example of an explicit metric with holonomy group equal to
Spin(7).

B can be realized explicitly as the space of Veronese surfaces in the 4-sphere S4.
The set of Veronese surfaces in S4 tangent to a given 2-plane P ∈ TpS

4 is a geodesic
C ⊂ B. We call such curves C-curves. The space of C-curves is diffeomorphic to the
Grassmannian Gr2(TS

4) ∼= SO(5)/T2.

Theorem: There is an SO(5)-invariant almost complex structure J on Gr2(TS
4)

such that any C-ruled associative in B is locally the Γ-image of some J -holomorphic
curve S. Conversely, for each J -holomorphic curve S in Gr2(TS

4) there is a dense
subset S◦ ⊂ S such that Γ(S◦) is a C-ruled associative submanifold of B.

As a consequence of this result, we are able to construct infinitely many diffeomor-
phism types of immersed associative submanifolds in B.
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