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Why should students study?

Value of computation, introduced in machine learning, has been

successfully used in models of human cognitive investment.

we are constitutively reluctant to mobilize all available

cognitive resources. That is, mental e↵ort is inherently

aversive or costly...

individuals can increase their control allocation when

higher incentives are on o↵er (i.e., they are not

constrained by ability) but hold back from doing so

A. Shenhav et al. (2017)

Many students lack confidence in the future benefits of their

academic progress relative to the costs of studying.

Math anxiety and stereotype threat make some cognitive tasks

torturous for many students, leading to academic disengagement.



Modeling aggregated course sequence outcomes

Attrition from required STEM sequences is costly for both students

and universities.

If 80% of students who take each course pass it, and 80% of those

who pass the first course take the second one, 51% of the students

who start the sequence complete it.

Replacing 80 with 90 yields a 73% completion rate.

Q: Does math placement predict persistence rates for two-course

calculus sequences?



Gender    Solid: Female.  Dashed: Male

Socio-economic    Solid: Low income, 1st Gen, or vet.  Dashed: “privileged”

Attrition from Calculus for the Physical Sciences, Math & Engineering



Gender    Solid: Female.  Dashed: Male

Socio-economic    Solid: Low income, 1st Gen, or vet.  Dashed: “privileged”

Attrition from Calculus for the Life Sciences



From the vaults: the Frenet frame

The Frenet frame of a curve ↵ 2 C
3
�
[0, L],R3

�
is a curve

F 2 C
1
([0, L], SO(3)).

The columns of F are t, the unit tangent; n, the unit normal; and

b, the binormal to ↵. If ↵ is parametrized by arc length, then

t = ↵0 n = Pt↵
00 b = ↵0 ⇥ ↵00.

The Frenet equations:

F
0
= FcXL, for XL = ⌧ e1 +  e3,

where

I  and ⌧ denote the curvature (assumed to be everywhere

nonzero) and torsion of ↵,

I {e1, e2, e3} is the standard Euclidean basis of R3
, and

I ˆ : R3 ! so(3) is determined by x̂y = x⇥ y 8 y 2 R3
.



The elastica (Bernoulli, 1691; Euler, 1744)

An elastica is a curve ↵ 2 C
3
�
[0, L],R3

�
minimizing

Z

↵
(s)2ds =

Z L

0
(t)2

��↵0�� dt.

The elastica is a highly simplified model of an inextensible elastic

rod with infinitesimal uniform cross section.

Standard variational approaches yield the evolution equation

↵000 � �↵0
= c

for some Lagrange multiplier � : [0, L] ! R and constant c .

Equivariance of the system with respect to Euclidean motions

yields conservation laws relating , 0, and ⌧ .

Curvature and torsion pairs (, ⌧) determine the Frenet frame F ,

which in turn determines the curve ↵, given initial data for (↵,F ).



Some representative elastica solutions



Generalized elasticas

Replacing 2 with some function of curvature, torsion, and

independent parameter determining a well-defined variational

problem yields generalized elasticas.

Given outcome data with a single independent parameter, e.g. best

placement score, we can (try to) identify functions for which our

sequence outcome data approximate generalized elasticas.

What about initial data?
Rather than using the data for the lowest placement value, set

conditions on some choice or analog of means:

I Translation—arithmetic mean of ↵(t)

I Rotation—if there exists a neighborhood U of the origin such

that exp |U is invertible and F (t) 2 exp(U) for 0  t  L, then

use the geometric mean of F , i.e. exp of the arithmetic mean

of exp
�1

(F (t)). If not, . . .



The generalized Frenet equations and Kirchho↵ rods

A curve (↵,F ,u) 2 C
1
�
[0, L],R3 ⇥ SO(3)⇥ R3

�
satisfies the

generalized Frenet equations if

Fe1 = ↵0
and F

0
= F û.

A Kirchho↵ rod is a solution of these equations minimizing the

total elastic energy

1
2

Z L

0
uTdiag[c]uds for some c 2 [0,1)

3.

A Kirchho↵ rod models an elastic rod with centerline ↵ and

infinitesimally thick circular uniform cross-section determined by F .

I Twisting energy: c1u
2
1

I Bending energy: c2u
2
2 + c3u

2
3

An untwisted symmetric (c2 = c3) Kirchho↵ rod is an elastica.



Control systems

The generalized Frenet equations can be interpreted as a control

system with control u.

The state space S of a control system is typically a manifold

(possibly with boundary).

Each state m 2 S has an associated admissible control region Am,

which is often a manifold with boundary.

The set A of admissible state and control pairs is given by

A := {(m, u) : m 2 S and u 2 Am}

The evolution of the state variable m is determined by a controlled

vector field X : A ! TS.

A solution of the fixed time control problem for X , with boundary

data m0 and mf , and duration tf is a curve (m, u) in A satisfying

m
0
= X (m, u), m(0) = m0, and m(tf ) = mf .



Optimal control and Pontryagin’s maximum principle

Given an instantaneous cost function C 2 C
0
(A,R), a solution

(m⇤, u⇤) of the optimal control problem is a solution of the control

problem that minimizes the total cost over all such solutions (m, u)

Z tf

0
C (m⇤(t), u⇤(t))dt 

Z tf

0
C (m(t), u(t))dt.

Pontryagin’s maximum principle relates optimal control to

Hamiltonian dynamics, introducing an auxiliary variable in the fiber

of the cotangent bundle of the state space S.

Potentially optimal trajectories can be constructed using

Hamiltonian methods—including exploitation of symmetries!

The Kirchho↵ rod can be regarded as an optimal control problem,

with cost function equal to the elastic energy.

We can seek coe�cients c such that our sequence outcome data

approximates a Kirchho↵ rod.



Multiple measures and more general rod models

Most incoming pre-STEM UCSC students have multiple math

assessments scores on record—one or more SAT Math section

scores, and possibly multiple ALEKS PPL scores.

We can use this additional information about prior knowledge and

math skills in our models, while still prioritizing the role of the

placement score.

Ansatz:
There are strong, but not overwhelming, correlations between

placement score (best ALEKS PPL score) and other pre-arrival

math assessment scores.

Small changes in placement score result in small changes in the

other measures aggregated by placement score.

Strategy:
Use rod models involving an assignment of a basis of R3

at each

point along the centerline ↵.



Process:

1. Determine the curve ↵ as before.

2. Compute mean initial and best SAT Math section scores, and

initial ALEKS PPL scores, aggregated by demographic group

and placement score.

3. Fit matrices F (t) to the ‘infinitesimal’ changes in these input

means and the outcome means as t increases.

4. Use rod models that require only that F (t) be nonsingular (so

far, so good) and ↵0
(t)

T
F (t)e1 > 0.

5. Fit elastic energies to the (↵,F ) outcome curves, such that

these curves are approximate solutions of the variational or

optimal control problem determined by the corresponding

elastic energy.

Equally weighted outcomes  left invariance under isometries.

Assumption of equal significance of changes in the multiple

measures  right invariance under isometries.



Modeling individual academic engagement

When modeling individual study e↵ort investment over time using

optimal control theory, we consider instantaneous cost functions

combining three terms:

I a solely state-dependent term that models the costs (both

internal and external) of the current state,

I a solely control-dependent term that models ‘life balance’

costs—the time and cognitive e↵ort invested in studying isn’t

available for other purposes (e.g. job, child care, recreation)

I a term modeling the psychological costs of studying; e.g.,

anxiety and stress resulting from low self-e�cacy.

For simplicity, we focus on control-a�ne vector fields X (m, u),
with drift field modeling decay of the state variables when little or

no e↵ort is invested, and linear life balance costs.



We assume that the controls lie in unit balls with respect to

state-dependent inner products, and consider psychological costs  
of the form

 (m,u) =  pe(m)� µ(m)⇠(kukm) ,

where  pe 2 C
1
(S,R) denotes the psychological cost of maximal

study e↵ort kukm = 1, µ 2 C
1
(S,R), and ⇠ 2 C

0
([0, 1], [0, 1])

1. is continuously di↵erentiable on [0, 1),

2. satisfies ⇠(0) = 1, ⇠0(0) = 0, and ⇠(1) = 0,

3. either ⇠0(1) exists or lims!1 |⇠0(s)| = 1.

The special case

⇠�(s) :=
p

1� s2

yields particularly simple expressions, while enforcing the constraint

kuk  1.



Symmetry for the sake of tractability

For learning models with a scalar state (subject mastery) and

su�ciently simple costs, standard undergraduate level methods for

reducing conservative systems to quadrature can be used.

Bifurcation analyses can then be applied to decompose the

associated parameter (cost coe�cients) and initial data space into

regions with qualitatively similar behavior.

Cost terms invariant with respect to a group action on the state

space yield optimal control systems to which all the standard

techniques for Hamiltonian systems with symmetry—Noether’s

Theorem, (singular) reduction, etc.—can be applied.

The aggregate sequence outcome curves suggest that subject

mastery doesn’t do all the heavy lifting in academic success  
learning costs invariant with respect to actions combining mastery,

self-e�cacy, etc. seem plausible.
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