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Motivation

▶ Adjoint Systems are used to efficiently compute the sensitivity of a
terminal or running cost function

C (q(tf )) or

∫ tf

0

L(q(t))dt

subject to an ordinary differential equation (ODE) constraint

q̇(t) = f (q(t)), q(0) = q0,

with respect to a perturbation in the initial condition δx0.
▶ Adjoint systems arise as the extremization conditions for optimal control

problems via the Pontryagin maximum principle.

Hamiltonian Description of Adjoint Systems

▶ Consider an ODE q̇ = f (q), specified by a vector field on a manifold M ,
f ∈ Γ(TM).

▶ Define the adjoint Hamiltonian H : T ∗M → R by

H(q, p) = ⟨p, f (q)⟩.
▶ The adjoint system is given by a Hamiltonian system on T ∗M relative to

the canonical symplectic form Ω = dq ∧ dp,

iXH
Ω = dH .

▶ In coordinates, an integral curve of XH has the expression

q̇ = ∂H/∂p = f (q),

ṗ = −∂H/∂q = −[Df (q)]∗p.

▶ The Hamiltonian vector field XH is the cotangent lift of f to a vector field
on T ∗M .

Symplecticity and Adjoint Sensitivity Analysis

▶ Since the adjoint system is Hamiltonian, the flow of the system is
symplectic; i.e., it preserves the symplectic form Ω. This can be expressed

d

dt
Ω(q(t),p(t))(V (t),W (t)) = 0,

where V and W are first variations of the adjoint system, which can be
identified with solutions of the linearization of the adjoint system

d

dt
δq = Df (q)δq,

d

dt
δp = −[Df (q)]∗δp.

▶ Symplecticity implies the quadratic conservation law
d

dt
⟨p(t), δq(t)⟩ = 0.

▶ Adjoint Sensitivity Analysis: By the above, ⟨p(tf ), δq(tf )⟩ = ⟨p(0), δq(0)⟩.
Choosing p(tf ) = ∇qC (q(tf )), one can backpropagate to solve for p(0),
which, by the quadratic conservation law, gives the sensitivity of a terminal
cost function with respect to a perturbation in the initial condition

p(0) =
∂

∂δq0
C (q(tf )).

▶ Can similarly treat a running cost function, by augmenting the
Hamiltonian HL(q, p) = H(q, p) + L(q).

Differential-Algebraic Equations

▶ Consider a differential-algebraic equation (DAE)

q̇ = f (q, u),

0 = ϕ(q, u).

Here, q ∈ Md are the dynamical variables and u ∈ Ma are the algebraic
variables. Geometrically, a DAE is specified by a section f of the bundle
TMd , the pullback bundle of TMd by Md ×Ma → Md , and by a section ϕ
of a vector bundle Φ → Md ×Ma.

▶ Say that the DAE has index 1 if ∂ϕ/∂u is an isomorphism pointwise. By
the implicit function theorem, one can locally solve the constraint equation
for u = u(q) and reduce the DAE to an ODE

q̇ = f (q, u(q)).

Adjoint Systems for DAEs

▶ Idea: extend the notion of an adjoint system to DAEs.
▶ To do this, introduce the spaces

▶ Define the adjoint DAE Hamiltonian H : T ∗Md ⊕ Φ∗ → R by

H(q, u, p, λ) = ⟨p, f (q, u)⟩ + ⟨λ, ϕ(q, u)⟩.
▶ Using the above maps, pullback the symplectic form Ω on T ∗Md to a

presymplectic form Ω0 on T ∗Md ⊕ Φ∗.
▶ Define the adjoint DAE system as the presymplectic Hamiltonian system

iXH
Ω0 = dH .

▶ In coordinates,

q̇ = ∂H/∂p = f (q, u),

ṗ = −∂H/∂q = −[Dqf (q, u)]
∗p − [Dqϕ(q, u)]

∗λ,

0 = ∂H/∂λ = ϕ(q, u),

0 = −∂H/∂u = −[Duf (q, u)]
∗p − [Duϕ(q, u)]

∗λ.

▶ The vector field XH is in general only defined on the primary constraint
submanifold specified by the last two equations. However, the flow of XH

may leave the submanifold, so one must further restrict to a final constraint
submanifold to which XH is tangent. This process to obtain such a final
constraint submanifold is known as the presymplectic constraint algorithm.

▶ When the underlying DAE has index 1, the presymplectic constraint
algorithm terminates after one step; i.e., the primary and final constraint
submanifolds coincide.

▶ Presymplecticity of the flow of XH yields a quadratic conservation law
analogous to the ODE case, allowing one to compute sensitivities of a
terminal or running cost function subject to a DAE constraint.

Structure-Preserving Discretizations of Adjoint Systems

▶ In most cases, one cannot analytically solve an adjoint system; hence, one
must discretize the system; i.e., numerically integrate the system.

▶ Key Idea: since an adjoint system has a (pre)symplectic structure, it is
natural to utilize a (pre)symplectic integrator to discretize such systems. In
particular, such integrators preserve the (pre)symplectic form and hence,
preserve the quadratic conservation laws used for adjoint sensitivity
analysis.

▶ We study how Galerkin Hamiltonian variational integrators can be used to
discretize such systems and extend the construction of these integrators to
presymplectic systems.

▶ We show that the process of forming an adjoint system, discretizing, and
reducing (from an index 1 DAE to an ODE) commute, for particular
choices of these processes:

▶ Using this naturality, we show that if the discrete generating function
approximates the exact generating function to order r , then the Type II
flow (q0, p1) 7→ (q1, p0) map is order-r accurate.

Future Research Direction

▶ We aim to explore the extension of this framework to the setting of
infinite-dimensional PDEs; in particular, to develop geometric methods for
adjoint systems for semilinear evolution equations

q̇ = Aq + f (q),

where A is an unbounded operator on a Banach space and f is a nonlinear
operator on a Banach space.

▶ The main tools are infinite-dimensional symplectic geometry and the
theory of C0-semigroups. For discretization, we will utilize the Galerkin
method in space and symplectic integration in time, with the aim of
proving an extended naturality result.

Summary

▶ The utility of adjoint systems for computing sensitivies can be understood
through (pre)symplectic geometry.

▶ One can utilize geometric integration to preserve the structures relevant to
adjoint sensitivity analysis and hence, construct integrators which can be
used to exactly compute sensitivities.
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